Source code for colour.appearance.llab

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
LLAB(l:c) Colour Appearance Model
=================================

Defines *LLAB(l:c)* colour appearance model objects:

-   :class:`LLAB_InductionFactors`
-   :attr:`LLAB_VIEWING_CONDITIONS`
-   :class:`LLAB_Specification`
-   :func:`XYZ_to_LLAB`

See Also
--------
`LLAB(l:c) Colour Appearance Model IPython Notebook
<http://nbviewer.ipython.org/github/colour-science/colour-ipython/blob/master/notebooks/appearance/llab.ipynb>`_  # noqa

References
----------
.. [1]  **Mark D. Fairchild**, *Color Appearance Models, 3nd Edition*,
        The Wiley-IS&T Series in Imaging Science and Technology,
        published June 2013, ASIN: B00DAYO8E2,
        locations 6019-6178.
.. [2]  **Luo, M. R., & Morovic, J.**,
        *Two Unsolved Issues in Colour Management – Colour Appearance and
        Gamut Mapping*,
        *5th International Conference on High Technology: Imaging Science and
        Technology – Evolution & Promise*
        published 1996, pp. 136–147.
.. [3]  **Luo, M. R., Lo, M. C., & Kuo, W. G.**,
        *The LLAB (l:c) colour model*,
        *Color Research & Application, Volume 21, Issue 6, pages 412–429,
        December 1996*,
        DOI: https://doi.org/10.1002/(SICI)1520-6378(199612)21:6<412::AID-COL4>3.0.CO;2-Z  # noqa
"""

from __future__ import division, unicode_literals

import math
import numpy as np
from collections import namedtuple

from colour.utilities import CaseInsensitiveMapping

__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013 - 2014 - Colour Developers'
__license__ = 'GPL V3.0 - http://www.gnu.org/licenses/'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'

__all__ = ['LLAB_InductionFactors',
           'LLAB_VIEWING_CONDITIONS',
           'LLAB_XYZ_TO_RGB_MATRIX',
           'LLAB_RGB_TO_XYZ_MATRIX',
           'LLAB_ReferenceSpecification',
           'LLAB_Specification',
           'XYZ_to_LLAB',
           'XYZ_to_RGB_LLAB',
           'chromatic_adaptation',
           'f',
           'opponent_colour_dimensions',
           'hue_angle',
           'chroma_correlate',
           'colourfulness_correlate',
           'saturation_correlate',
           'final_opponent_signals']


[docs]class LLAB_InductionFactors( namedtuple('LLAB_InductionFactors', ('D', 'F_S', 'F_L', 'F_C'))): """ *LLAB(l:c)* colour appearance model induction factors. Parameters ---------- D : numeric *Discounting-the-Illuminant* factor :math:`D` in domain [0, 1]. F_S : numeric Surround induction factor :math:`F_S`. F_L : numeric *Lightness* induction factor :math:`F_L`. F_C : numeric *Chroma* induction factor :math:`F_C`. """
LLAB_VIEWING_CONDITIONS = CaseInsensitiveMapping( {'Reference Samples & Images, Average Surround, Subtending > 4': ( LLAB_InductionFactors(1, 3, 0, 1)), 'Reference Samples & Images, Average Surround, Subtending < 4': ( LLAB_InductionFactors(1, 3, 1, 1)), 'Television & VDU Displays, Dim Surround': ( LLAB_InductionFactors(0.7, 3.5, 1, 1)), 'Cut Sheet Transparency, Dim Surround': ( LLAB_InductionFactors(1, 5, 1, 1.1)), '35mm Projection Transparency, Dark Surround': ( LLAB_InductionFactors(0.7, 4, 1, 1))}) """ Reference *LLAB(l:c)* colour appearance model viewing conditions. LLAB_VIEWING_CONDITIONS : dict ('Reference Samples & Images, Average Surround, Subtending > 4', 'Reference Samples & Images, Average Surround, Subtending < 4', 'Television & VDU Displays, Dim Surround', 'Cut Sheet Transparency, Dim Surround':, '35mm Projection Transparency, Dark Surround') Aliases: - 'ref_average_4_plus': 'Reference Samples & Images, Average Surround, Subtending > 4' - 'ref_average_4_minus': 'Reference Samples & Images, Average Surround, Subtending < 4' - 'tv_dim': 'Television & VDU Displays, Dim Surround' - 'sheet_dim': 'Cut Sheet Transparency, Dim Surround' - 'projected_dark': '35mm Projection Transparency, Dark Surround' """ LLAB_VIEWING_CONDITIONS['ref_average_4_plus'] = ( LLAB_VIEWING_CONDITIONS[ 'Reference Samples & Images, Average Surround, Subtending > 4']) LLAB_VIEWING_CONDITIONS['ref_average_4_minus'] = ( LLAB_VIEWING_CONDITIONS[ 'Reference Samples & Images, Average Surround, Subtending < 4']) LLAB_VIEWING_CONDITIONS['tv_dim'] = ( LLAB_VIEWING_CONDITIONS[ 'Television & VDU Displays, Dim Surround']) LLAB_VIEWING_CONDITIONS['sheet_dim'] = ( LLAB_VIEWING_CONDITIONS[ 'Cut Sheet Transparency, Dim Surround']) LLAB_VIEWING_CONDITIONS['projected_dark'] = ( LLAB_VIEWING_CONDITIONS[ '35mm Projection Transparency, Dark Surround']) LLAB_XYZ_TO_RGB_MATRIX = np.array( [[0.8951, 0.2664, -0.1614], [-0.7502, 1.7135, 0.0367], [0.0389, -0.0685, 1.0296]]) """ *LLAB(l:c)* colour appearance model *CIE XYZ* colourspace matrix to normalised cone responses matrix. LLAB_XYZ_TO_RGB_MATRIX : array_like, (3, 3) """ LLAB_RGB_TO_XYZ_MATRIX = np.around( np.linalg.inv(LLAB_XYZ_TO_RGB_MATRIX), decimals=4) """ *LLAB(l:c)* colour appearance model normalised cone responses to *CIE XYZ* colourspace matrix. Notes ----- - This matrix has been rounded on purpose to 4 decimals so that we keep consistency with **Mark D. Fairchild** implementation results. LLAB_RGB_TO_XYZ_MATRIX : array_like, (3, 3) """
[docs]class LLAB_ReferenceSpecification( namedtuple('LLAB_ReferenceSpecification', ('L_L', 'Ch_L', 'h_L', 's_L', 'C_L', 'HC', 'A_L', 'B_L'))): """ Defines the *LLAB(l:c)* colour appearance model reference specification. This specification has field names consistent with **Mark D. Fairchild** reference. Parameters ---------- L_L : numeric Correlate of *Lightness* :math:`L_L`. Ch_L : numeric Correlate of *chroma* :math:`Ch_L`. h_L : numeric *Hue* angle :math:`h_L` in degrees. s_L : numeric Correlate of *saturation* :math:`s_L`. C_L : numeric Correlate of *colourfulness* :math:`C_L`. HC : numeric *Hue* :math:`h` composition :math:`H^C`. A_L : numeric Opponent signal :math:`A_L`. B_L : numeric Opponent signal :math:`B_L`. """
[docs]class LLAB_Specification( namedtuple('LLAB_Specification', ('J', 'C', 'h', 's', 'M', 'HC', 'a', 'b'))): """ Defines the *LLAB(l:c)* colour appearance model specification. This specification has field names consistent with the remaining colour appearance models in :mod:`colour.appearance` but diverge from **Mark D. Fairchild** reference. Parameters ---------- J : numeric Correlate of *Lightness* :math:`L_L`. C : numeric Correlate of *chroma* :math:`Ch_L`. h : numeric *Hue* angle :math:`h_L` in degrees. s : numeric Correlate of *saturation* :math:`s_L`. M : numeric Correlate of *colourfulness* :math:`C_L`. HC : numeric *Hue* :math:`h` composition :math:`H^C`. a : numeric Opponent signal :math:`A_L`. b : numeric Opponent signal :math:`B_L`. """
[docs]def XYZ_to_LLAB( XYZ, XYZ_0, Y_b, L, surround=LLAB_VIEWING_CONDITIONS.get( 'Reference Samples & Images, Average Surround, Subtending < 4')): """ Computes the *LLAB(L:c)* colour appearance model correlates. Parameters ---------- XYZ : array_like, (3,) *CIE XYZ* colourspace matrix of test sample / stimulus in domain [0, 100]. XYZ_0 : array_like, (3,) *CIE XYZ* colourspace matrix of reference white in domain [0, 100]. Y_b : numeric Luminance factor of the background in :math:`cd/m^2`. L : numeric Absolute luminance :math:`L` of reference white in :math:`cd/m^2`. surround : LLAB_InductionFactors, optional Surround viewing conditions induction factors. Returns ------- LLAB_Specification *LLAB(L:c)* colour appearance model specification. Warning ------- The output domain of that definition is non standard! Notes ----- - Input *CIE XYZ* colourspace matrix is in domain [0, 100]. - Input *CIE XYZ_0* colourspace matrix is in domain [0, 100]. Examples -------- >>> XYZ = np.array([19.01, 20, 21.78]) >>> XYZ_0 = np.array([95.05, 100, 108.88]) >>> Y_b = 20.0 >>> L = 318.31 >>> surround = LLAB_VIEWING_CONDITIONS['ref_average_4_minus'] >>> XYZ_to_LLAB(XYZ, XYZ_0, Y_b, L, surround) # doctest: +ELLIPSIS LLAB_Specification(J=37.3680474..., C=0.0086506..., h=229.4635727..., s=0.0002314..., M=0.0183832..., HC=None, a=-0.0119478..., b=-0.0139711...) """ X, Y, Z = np.ravel(XYZ) RGB = XYZ_to_RGB_LLAB(XYZ) RGB_0 = XYZ_to_RGB_LLAB(XYZ_0) # Reference illuminant *CIE Standard Illuminant D Series* *D65*. XYZ_0r = np.array([95.05, 100, 108.88]) RGB_0r = XYZ_to_RGB_LLAB(XYZ_0r) # Computing chromatic adaptation. XYZ_r = chromatic_adaptation(RGB, RGB_0, RGB_0r, Y, surround.D) # ------------------------------------------------------------------------- # Computing the correlate of *Lightness* :math:`L_L`. # ------------------------------------------------------------------------- # Computing opponent colour dimensions. L_L, a, b = opponent_colour_dimensions(XYZ_r, Y_b, surround.F_S, surround.F_L) # Computing perceptual correlates. # ------------------------------------------------------------------------- # Computing the correlate of *chroma* :math:`Ch_L`. # ------------------------------------------------------------------------- Ch_L = chroma_correlate(a, b) # ------------------------------------------------------------------------- # Computing the correlate of *colourfulness* :math:`C_L`. # ------------------------------------------------------------------------- C_L = colourfulness_correlate(L, L_L, Ch_L, surround.F_C) # ------------------------------------------------------------------------- # Computing the correlate of *saturation* :math:`s_L`. # ------------------------------------------------------------------------- s_L = saturation_correlate(Ch_L, L_L) # ------------------------------------------------------------------------- # Computing the *hue* angle :math:`h_L`. # ------------------------------------------------------------------------- h_L = hue_angle(a, b) h_Lr = math.radians(h_L) # TODO: Implement hue composition computation. # ------------------------------------------------------------------------- # Computing final opponent signals. # ------------------------------------------------------------------------- A_L, B_L = final_opponent_signals(C_L, h_Lr) return LLAB_Specification(L_L, Ch_L, h_L, s_L, C_L, None, A_L, B_L)
[docs]def XYZ_to_RGB_LLAB(XYZ): """ Converts from *CIE XYZ* colourspace to normalised cone responses. Parameters ---------- XYZ : array_like, (3,) *CIE XYZ* colourspace matrix. Returns ------- ndarray, (3,) Normalised cone responses. Examples -------- >>> XYZ = np.array([19.01, 20, 21.78]) >>> XYZ_to_RGB_LLAB(XYZ) # doctest: +ELLIPSIS array([ 0.9414279..., 1.0404012..., 1.0897088...]) """ return LLAB_XYZ_TO_RGB_MATRIX.dot(XYZ / XYZ[1])
[docs]def chromatic_adaptation(RGB, RGB_0, RGB_0r, Y, D=1): """ Applies chromatic adaptation to given *RGB* normalised cone responses matrix. Parameters ---------- RGB : array_like, (3,) *RGB* normalised cone responses matrix of test sample / stimulus. RGB_0 : array_like, (3,) *RGB* normalised cone responses matrix of reference white. RGB_0r : array_like, (3,) *RGB* normalised cone responses matrix of reference illuminant *CIE Standard Illuminant D Series* *D65*. Y : numeric Tristimulus values :math:`Y` of the stimulus. D : numeric, optional *Discounting-the-Illuminant* factor in domain [0, 1]. Returns ------- ndarray, (3,) Adapted *CIE XYZ* colourspace matrix. Examples -------- >>> RGB = np.array([0.94142795, 1.0404012, 1.08970885]) >>> RGB_0 = np.array([0.94146023, 1.04039386, 1.08950293]) >>> RGB_0r = np.array([0.94146023, 1.04039386, 1.08950293]) >>> Y = 20.0 >>> chromatic_adaptation(RGB, RGB_0, RGB_0r, Y) # doctest: +ELLIPSIS array([ 19.0099957..., 20.0009186..., 21.7799386...]) """ R, G, B = np.ravel(RGB) R_0, G_0, B_0 = np.ravel(RGB_0) R_0r, G_0r, B_0r = np.ravel(RGB_0r) beta = (B_0 / B_0r) ** 0.0834 R_r = (D * (R_0r / R_0) + 1 - D) * R G_r = (D * (G_0r / G_0) + 1 - D) * G B_r = (D * (B_0r / (B_0 ** beta)) + 1 - D) * (abs(B) ** beta) RGB_r = np.array([R_r, G_r, B_r]) X_r, Y_r, Z_r = LLAB_RGB_TO_XYZ_MATRIX.dot(RGB_r * Y) return np.array([X_r, Y_r, Z_r])
[docs]def f(x, F_S): """ Defines the nonlinear response function of the *LLAB(L:c)* colour appearance model used to model the nonlinear behavior of various visual responses. Parameters ---------- x : numeric or array_like Visual response variable :math:`x`. F_S : numeric Surround induction factor :math:`F_S`. Returns ------- numeric or array_like Modeled visual response variable :math:`x`. Examples -------- >>> x = np.array([0.23350512, 0.23351103, 0.23355179]) >>> f(0.20000918623399996, 3) # doctest: +ELLIPSIS array(0.5848125...) """ x_m = np.where(x > 0.008856, x ** (1 / F_S), ((((0.008856 ** (1 / F_S)) - (16 / 116)) / 0.008856) * x + (16 / 116))) return x_m
[docs]def opponent_colour_dimensions(XYZ, Y_b, F_S, F_L): """ Returns opponent colour dimensions from given adapted *CIE XYZ* colourspace matrix. The opponent colour dimensions are based on a modified *CIE Lab* colourspace formulae. Parameters ---------- XYZ : array_like, (3,) Adapted *CIE XYZ* colourspace matrix. Y_b : numeric Luminance factor of the background in :math:`cd/m^2`. F_S : numeric Surround induction factor :math:`F_S`. F_L : numeric Lightness induction factor :math:`F_L`. Returns ------- ndarray, (3,) Opponent colour dimensions. Examples -------- >>> XYZ = np.array([19.00999572, 20.00091862, 21.77993863]) >>> Y_b = 20.0 >>> F_S = 3.0 >>> F_L = 1.0 >>> opponent_colour_dimensions(XYZ, Y_b, F_S, F_L) # doctest: +ELLIPSIS array([ 3.7368047...e+01, -4.4986443...e-03, -5.2604647...e-03]) """ X, Y, Z = np.ravel(XYZ) # Account for background lightness contrast. z = 1 + F_L * ((Y_b / 100) ** 0.5) # Computing modified *CIE Lab* colourspace matrix. L = 116 * (f(Y / 100, F_S) ** z) - 16 a = 500 * (f(X / 95.05, F_S) - f(Y / 100, F_S)) b = 200 * (f(Y / 100, F_S) - f(Z / 108.88, F_S)) return np.array([L, a, b])
[docs]def hue_angle(a, b): """ Returns the *hue* angle :math:`h_L` in degrees. Parameters ---------- a : numeric Opponent colour dimension :math:`a`. b : numeric Opponent colour dimension :math:`b`. Returns ------- numeric *Hue* angle :math:`h_L` in degrees. Examples -------- >>> hue_angle(-4.49864756e-03, -5.26046353e-03) # doctest: +ELLIPSIS 229.4635727... """ h_L = math.degrees(np.arctan2(b, a)) % 360 return h_L
[docs]def chroma_correlate(a, b): """ Returns the correlate of *chroma* :math:`Ch_L`. Parameters ---------- a : numeric Opponent colour dimension :math:`a`. b : numeric Opponent colour dimension :math:`b`. Returns ------- numeric Correlate of *chroma* :math:`Ch_L`. Examples -------- >>> a = -4.49864756e-03 >>> b = -5.26046353e-03 >>> chroma_correlate(a, b) # doctest: +ELLIPSIS 0.0086506... """ c = (a ** 2 + b ** 2) ** 0.5 Ch_L = 25 * np.log(1 + 0.05 * c) return Ch_L
[docs]def colourfulness_correlate(L, L_L, Ch_L, F_C): """ Returns the correlate of *colourfulness* :math:`C_L`. Parameters ---------- L : numeric Absolute luminance :math:`L` of reference white in :math:`cd/m^2`. L_L : numeric Correlate of *Lightness* :math:`L_L`. Ch_L : numeric Correlate of *chroma* :math:`Ch_L`. F_C : numeric Chroma induction factor :math:`F_C`. Returns ------- numeric Correlate of *colourfulness* :math:`C_L`. Examples -------- >>> L = 318.31 >>> L_L = 37.368047493928195 >>> Ch_L = 0.0086506620517144972 >>> F_C = 1.0 >>> colourfulness_correlate(L, L_L, Ch_L, F_C) # doctest: +ELLIPSIS 0.0183832... """ S_C = 1 + 0.47 * np.log10(L) - 0.057 * np.log10(L) ** 2 S_M = 0.7 + 0.02 * L_L - 0.0002 * L_L ** 2 C_L = Ch_L * S_M * S_C * F_C return C_L
[docs]def saturation_correlate(Ch_L, L_L): """ Returns the correlate of *saturation* :math:`S_L`. Parameters ---------- Ch_L : numeric Correlate of *chroma* :math:`Ch_L`. L_L : numeric Correlate of *Lightness* :math:`L_L`. Returns ------- numeric Correlate of *saturation* :math:`S_L`. Examples -------- >>> Ch_L = 0.0086506620517144972 >>> L_L = 37.368047493928195 >>> saturation_correlate(Ch_L, L_L) # doctest: +ELLIPSIS 0.0002314... """ S_L = Ch_L / L_L return S_L
[docs]def final_opponent_signals(C_L, h_L): """ Returns the final opponent signals :math:`A_L` and :math:`B_L`. Parameters ---------- C_L : numeric Correlate of *colourfulness* :math:`C_L`. h_L : numeric Correlate of *hue* :math:`h_L` in radians. Returns ------- tuple Final opponent signals :math:`A_L` and :math:`B_L`. Examples -------- >>> C_L = 0.0183832899143 >>> h_L = 4.004894857014253 >>> final_opponent_signals(C_L, h_L) # doctest: +ELLIPSIS (-0.0119478..., -0.0139711...) """ A_L = C_L * np.cos(h_L) B_L = C_L * np.sin(h_L) return A_L, B_L