#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Von Kries Chromatic Adaptation Model
====================================
Defines Von Kries chromatic adaptation model objects:
- :func:`chromatic_adaptation_matrix_VonKries`
- :func:`chromatic_adaptation_VonKries`
See Also
--------
`Chromatic Adaptation IPython Notebook
<http://nbviewer.ipython.org/github/colour-science/colour-ipython/blob/master/notebooks/adaptation/vonkries.ipynb>`_ # noqa
References
----------
.. [1] Fairchild, M. D. (2013). Chromatic Adaptation Models. In Color
Appearance Models (3rd ed., pp. 4179–4252). Wiley. ASIN:B00DAYO8E2
"""
from __future__ import division, unicode_literals
import numpy as np
from colour.adaptation import CHROMATIC_ADAPTATION_TRANSFORMS
__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013 - 2014 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'
__all__ = ['chromatic_adaptation_matrix_VonKries',
'chromatic_adaptation_VonKries']
[docs]def chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr, transform='CAT02'):
"""
Returns the *chromatic adaptation* matrix from test viewing conditions
*CIE XYZ_w* colourspace matrix to reference viewing conditions *CIE XYZ_wr*
colourspace matrix.
Parameters
----------
XYZ_w : array_like, (3,)
Test viewing condition *CIE XYZ* colourspace matrix.
XYZ_wr : array_like, (3,)
Reference viewing condition *CIE XYZ* colourspace matrix.
transform : unicode, optional
{'CAT02', 'XYZ Scaling', 'Von Kries', 'Bradford', 'Sharp', 'Fairchild,
'CMCCAT97', 'CMCCAT2000', 'CAT02_BRILL_CAT', 'Bianco', 'Bianco PC'},
Chromatic adaptation transform.
Returns
-------
ndarray, (3, 3)
Chromatic adaptation matrix.
Raises
------
KeyError
If chromatic adaptation method is not defined.
Examples
--------
>>> XYZ_w = np.array([1.09846607, 1., 0.3558228])
>>> XYZ_wr = np.array([0.95042855, 1., 1.08890037])
>>> chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr) # noqa # doctest: +ELLIPSIS
array([[ 0.8687653..., -0.1416539..., 0.3871961...],
[-0.1030072..., 1.0584014..., 0.1538646...],
[ 0.0078167..., 0.0267875..., 2.9608177...]])
Using Bradford method:
>>> XYZ_w = np.array([1.09846607, 1., 0.3558228])
>>> XYZ_wr = np.array([0.95042855, 1., 1.08890037])
>>> method = 'Bradford'
>>> chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr, method) # noqa # doctest: +ELLIPSIS
array([[ 0.8446794..., -0.1179355..., 0.3948940...],
[-0.1366408..., 1.1041236..., 0.1291981...],
[ 0.0798671..., -0.1349315..., 3.1928829...]])
"""
transform_matrix = CHROMATIC_ADAPTATION_TRANSFORMS.get(transform)
if transform_matrix is None:
raise KeyError(
'"{0}" chromatic adaptation transform is not defined! Supported '
'transforms: "{1}".'.format(
transform,
CHROMATIC_ADAPTATION_TRANSFORMS.keys()))
XYZ_w, XYZ_wr = np.ravel(XYZ_w), np.ravel(XYZ_wr)
if (XYZ_w == XYZ_wr).all():
# Skip the chromatic adaptation computation if the two input matrices
# are the same, no adaptation is needed.
return np.identity(3)
rgb_w = np.ravel(np.dot(transform_matrix, XYZ_w))
rgb_wr = np.ravel(np.dot(transform_matrix, XYZ_wr))
D = np.diagflat(np.divide(rgb_wr, rgb_w)).reshape((3, 3))
cat = np.dot(np.dot(np.linalg.inv(transform_matrix), D), transform_matrix)
return cat
[docs]def chromatic_adaptation_VonKries(XYZ, XYZ_w, XYZ_wr, transform='CAT02'):
"""
Adapts given *CIE XYZ* colourspace stimulus from test viewing conditions
*CIE XYZ_w* colourspace matrix to reference viewing conditions *CIE XYZ_wr*
colourspace matrix. [6]_
Parameters
----------
XYZ : array_like, (3,)
*CIE XYZ* colourspace stimulus to adapt.
XYZ_w : array_like, (3,)
Test viewing condition *CIE XYZ* colourspace whitepoint matrix.
XYZ_wr : array_like, (3,)
Reference viewing condition *CIE XYZ* colourspace whitepoint matrix.
transform : unicode, optional
{'CAT02', 'XYZ Scaling', 'Von Kries', 'Bradford', 'Sharp', 'Fairchild,
'CMCCAT97', 'CMCCAT2000', 'CAT02_BRILL_CAT', 'Bianco', 'Bianco PC'},
Chromatic adaptation transform.
Returns
-------
ndarray, (3,)
*CIE XYZ_c* colourspace matrix of the stimulus corresponding colour.
Examples
--------
>>> XYZ = np.array([0.07049534, 0.1008, 0.09558313])
>>> XYZ_w = np.array([1.09846607, 1., 0.3558228])
>>> XYZ_wr = np.array([0.95042855, 1., 1.08890037])
>>> chromatic_adaptation_VonKries(XYZ, XYZ_w, XYZ_wr) # doctest: +ELLIPSIS
array([ 0.0839746..., 0.1141321..., 0.2862554...])
Using Bradford method:
>>> XYZ = np.array([0.07049534, 0.1008, 0.09558313])
>>> XYZ_w = np.array([1.09846607, 1., 0.3558228])
>>> XYZ_wr = np.array([0.95042855, 1., 1.08890037])
>>> method = 'Bradford'
>>> chromatic_adaptation_VonKries(XYZ, XYZ_w, XYZ_wr, method) # noqa # doctest: +ELLIPSIS
array([ 0.0854032..., 0.1140122..., 0.2972149...])
"""
cat = chromatic_adaptation_matrix_VonKries(XYZ_w, XYZ_wr, transform)
XYZ_a = np.dot(cat, XYZ)
return XYZ_a