Bases: colour.colorimetry.spectrum.SpectralPowerDistribution
Defines a IES TM-27-14 spectral power distribution.
This class can read and write IES TM-27-14 spectral data XML files.
Parameters: |
|
---|
Notes
Reflection Geometry
Transmission Geometry
Examples
>>> from os.path import dirname, join
>>> directory = join(dirname(__file__), 'tests', 'resources')
>>> spd = IES_TM2714_Spd(join(directory, 'Fluorescent.spdx'))
>>> spd.read()
True
>>> spd.header.manufacturer
'Unknown'
>>> spd[501.7]
0.095...
Property for self.__bandwidth_FWHM private attribute.
Returns: | self.__bandwidth_FWHM. |
---|---|
Return type: | numeric |
Property for self.__bandwidth_corrected private attribute.
Returns: | self.__bandwidth_corrected. |
---|---|
Return type: | bool |
Property for self.__header private attribute.
Returns: | self.__header. |
---|---|
Return type: | IES_TM2714_Header |
Property for self.mapping attribute.
Return type: | Structure |
---|
Warning
IES_TM2714_Spd.mapping is read only.
Property for self.__path private attribute.
Returns: | self.__path. |
---|---|
Return type: | unicode |
Reads and parses the spectral data XML file path.
Returns: | Definition success. |
---|---|
Return type: | bool |
Examples
>>> from os.path import dirname, join
>>> directory = join(dirname(__file__), 'tests', 'resources')
>>> spd = IES_TM2714_Spd(join(directory, 'Fluorescent.spdx'))
>>> spd.read()
True
>>> spd.header.description
'Rare earth fluorescent lamp'
>>> spd[400]
0.034...
Property for self.__reflection_geometry private attribute.
Returns: | self.__reflection_geometry. |
---|---|
Return type: | unicode |
Property for self.__spectral_quantity private attribute.
Returns: | self.__spectral_quantity. |
---|---|
Return type: | unicode |
Property for self.__transmission_geometry private attribute.
Returns: | self.__transmission_geometry. |
---|---|
Return type: | unicode |
Write the spd spectral data to XML file path.
Returns: | Definition success. |
---|---|
Return type: | bool |
Examples
>>> from os.path import dirname, join
>>> from shutil import rmtree
>>> from tempfile import mkdtemp
>>> directory = join(dirname(__file__), 'tests', 'resources')
>>> spd = IES_TM2714_Spd(join(directory, 'Fluorescent.spdx'))
>>> spd.read()
True
>>> temporary_directory = mkdtemp()
>>> spd.path = join(temporary_directory, 'Fluorescent.spdx')
>>> spd.write()
True
>>> rmtree(temporary_directory)
Reads the spectral data from given CSV file in the following form:
390, 4.15003E-04, 3.68349E-04, 9.54729E-03 395, 1.05192E-03, 9.58658E-04, 2.38250E-02 400, 2.40836E-03, 2.26991E-03, 5.66498E-02 ... 830, 9.74306E-07, 9.53411E-08, 0.00000
and returns it as an OrderedDict of dict as follows:
OrderedDict([ (‘field’, {‘wavelength’: ‘value’, ..., ‘wavelength’: ‘value’}), ..., (‘field’, {‘wavelength’: ‘value’, ..., ‘wavelength’: ‘value’})])
Parameters: |
|
---|---|
Returns: | CSV file content. |
Return type: | OrderedDict |
Raises: | RuntimeError – If the CSV spectral data file doesn’t define the appropriate fields. |
Notes
Examples
>>> import os
>>> from pprint import pprint
>>> csv_file = os.path.join(
... os.path.dirname(__file__),
... 'tests',
... 'resources',
... 'colorchecker_n_ohta.csv')
>>> spds_data = read_spectral_data_from_csv_file(csv_file)
>>> pprint(list(spds_data.keys()))
['1',
'2',
'3',
'4',
'5',
'6',
'7',
'8',
'9',
'10',
'11',
'12',
'13',
'14',
'15',
'16',
'17',
'18',
'19',
'20',
'21',
'22',
'23',
'24']
Reads the spectral data from given CSV file and return its content as an OrderedDict of colour.colorimetry.spectrum.SpectralPowerDistribution classes.
Parameters: |
|
---|---|
Returns: | colour.colorimetry.spectrum.SpectralPowerDistribution classes of given CSV file. |
Return type: | OrderedDict |
Examples
>>> import os
>>> from pprint import pprint
>>> csv_file = os.path.join(
... os.path.dirname(__file__),
... 'tests',
... 'resources',
... 'colorchecker_n_ohta.csv')
>>> spds = read_spds_from_csv_file(csv_file)
>>> pprint(list(spds.items()))
[('1',
<...SpectralPowerDistribution object at 0x...>),
('2',
<...SpectralPowerDistribution object at 0x...>),
('3',
<...SpectralPowerDistribution object at 0x...>),
('4',
<...SpectralPowerDistribution object at 0x...>),
('5',
<...SpectralPowerDistribution object at 0x...>),
('6',
<...SpectralPowerDistribution object at 0x...>),
('7',
<...SpectralPowerDistribution object at 0x...>),
('8',
<...SpectralPowerDistribution object at 0x...>),
('9',
<...SpectralPowerDistribution object at 0x...>),
('10',
<...SpectralPowerDistribution object at 0x...>),
('11',
<...SpectralPowerDistribution object at 0x...>),
('12',
<...SpectralPowerDistribution object at 0x...>),
('13',
<...SpectralPowerDistribution object at 0x...>),
('14',
<...SpectralPowerDistribution object at 0x...>),
('15',
<...SpectralPowerDistribution object at 0x...>),
('16',
<...SpectralPowerDistribution object at 0x...>),
('17',
<...SpectralPowerDistribution object at 0x...>),
('18',
<...SpectralPowerDistribution object at 0x...>),
('19',
<...SpectralPowerDistribution object at 0x...>),
('20',
<...SpectralPowerDistribution object at 0x...>),
('21',
<...SpectralPowerDistribution object at 0x...>),
('22',
<...SpectralPowerDistribution object at 0x...>),
('23',
<...SpectralPowerDistribution object at 0x...>),
('24',
<...SpectralPowerDistribution object at 0x...>)]
Writes the given spectral power distributions to given CSV file.
Parameters: |
|
---|---|
Returns: | Definition success. |
Return type: | bool |
Raises: | RuntimeError – If the given spectral power distributions have different shapes. |
Reads the spectral data from given X-Rite file and returns it as an OrderedDict of colour.colorimetry.spectrum.SpectralPowerDistribution classes.
Parameters: | path (unicode) – Absolute X-Rite file path. |
---|---|
Returns: | colour.colorimetry.spectrum.SpectralPowerDistribution classes of given X-Rite file. |
Return type: | OrderedDict |
Notes
Examples
>>> import os
>>> from pprint import pprint
>>> xrite_file = os.path.join(
... os.path.dirname(__file__),
... 'tests',
... 'resources',
... 'xrite_digital_colour_checker.txt')
>>> spds_data = read_spds_from_xrite_file(xrite_file)
>>> pprint(list(spds_data.keys()))
['X1', 'X2', 'X3', 'X4', 'X5', 'X6', 'X7', 'X8', 'X9', 'X10']