Defines objects related to RGB colourspace derivation, essentially calculating the normalised primary matrix for given RGB colourspace primaries and whitepoint.
See also
References
[1] | SMPTE. (1993). Derivation of Basic Television Color Equations. In RP 177:1993 (Vol. RP 177:199). doi:10.5594/S9781614821915 |
Returns the z coordinate using given xy chromaticity coordinates.
Parameters: | xy (array_like) – xy chromaticity coordinates. |
---|---|
Returns: | z coordinate. |
Return type: | numeric |
Examples
>>> xy_to_z((0.25, 0.25))
0.5
Returns the normalised primary matrix using given primaries and whitepoint matrices.
Parameters: |
|
---|---|
Returns: | Normalised primary matrix. |
Return type: | ndarray, (3, 3) |
Examples
>>> pms = np.array([0.73470, 0.26530, 0.00000, 1.00000, 0.00010, -0.07700])
>>> whitepoint = (0.32168, 0.33767)
>>> normalised_primary_matrix(pms, whitepoint)
array([[ 9.5255239...e-01, 0.0000000...e+00, 9.3678631...e-05],
[ 3.4396645...e-01, 7.2816609...e-01, -7.2132546...e-02],
[ 0.0000000...e+00, 0.0000000...e+00, 1.0088251...e+00]])
Returns the luminance equation from given primaries and whitepoint matrices.
Parameters: |
|
---|---|
Returns: | Luminance equation. |
Return type: | unicode |
Examples
>>> pms = np.array([0.73470, 0.26530, 0.00000, 1.00000, 0.00010, -0.07700])
>>> whitepoint = (0.32168, 0.33767)
>>> # Doctests skip for Python 2.x compatibility.
>>> RGB_luminance_equation(pms, whitepoint)
'Y = 0.3439664...(R) + 0.7281660...(G) + -0.0721325...(B)'
Returns the luminance \(y\) of given RGB components from given primaries and whitepoint matrices.
Parameters: |
|
---|---|
Returns: | Luminance \(y\). |
Return type: | numeric |
Examples
>>> RGB = np.array([40.6, 4.2, 67.4])
>>> pms = np.array([0.73470, 0.26530, 0.00000, 1.00000, 0.00010, -0.07700])
>>> whitepoint = (0.32168, 0.33767)
>>> RGB_luminance(RGB, pms, whitepoint)
12.1616018...