Source code for colour.colorimetry.whiteness

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Whiteness Index :math:`W`
=========================

Defines *whiteness* index :math:`W` computation objects:

-   :func:`whiteness_Berger1959`
-   :func:`whiteness_Taube1960`
-   :func:`whiteness_Stensby1968`
-   :func:`whiteness_ASTM313`
-   :func:`whiteness_Ganz1979`
-   :func:`whiteness_CIE2004`

See Also
--------
`Whiteness IPython Notebook
<http://nbviewer.ipython.org/github/colour-science/colour-ipython/blob/master/notebooks/colorimetry/whiteness.ipynb>`_  # noqa

References
----------
.. [1]  Wikipedia. (n.d.). Whiteness. Retrieved September 17, 2014, from
        http://en.wikipedia.org/wiki/Whiteness
.. [2]  X-Rite, & Pantone. (2012). Color iQC and Color iMatch Color
        Calculations Guide. Retrieved from
        http://www.xrite.com/documents/literature/en/09_Color_Calculations_en.pdf  # noqa
.. [3]  Wyszecki, G., & Stiles, W. S. (2000). Table I(6.5.3) Whiteness
        Formulae (Whiteness Measure Denoted by W). In Color Science: Concepts
        and Methods, Quantitative Data and Formulae (pp. 837–839). Wiley.
        ISBN:978-0471399186
"""

from __future__ import division, unicode_literals

import numpy as np

from colour.utilities import CaseInsensitiveMapping, tsplit, tstack

__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013 - 2015 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'

__all__ = ['whiteness_Berger1959',
           'whiteness_Taube1960',
           'whiteness_Stensby1968',
           'whiteness_ASTM313',
           'whiteness_Ganz1979',
           'whiteness_CIE2004',
           'WHITENESS_METHODS',
           'whiteness']


[docs]def whiteness_Berger1959(XYZ, XYZ_0): """ Returns the *whiteness* index :math:`WI` of given sample *CIE XYZ* tristimulus values using Berger (1959) method. [2]_ Parameters ---------- XYZ : array_like *CIE XYZ* tristimulus values of sample. XYZ_0 : array_like *CIE XYZ* tristimulus values of reference white. Returns ------- numeric or ndarray *Whiteness* :math:`WI`. Notes ----- - Input *CIE XYZ* and *CIE XYZ_0* tristimulus values are in domain [0, 100]. - *Whiteness* :math:`WI` values larger than 33.33 indicate a bluish white, and values smaller than 33.33 indicate a yellowish white. Warning ------- The input domain of that definition is non standard! Examples -------- >>> XYZ = np.array([95.00000000, 100.00000000, 105.00000000]) >>> XYZ_0 = np.array([94.80966767, 100.00000000, 107.30513595]) >>> whiteness_Berger1959(XYZ, XYZ_0) # doctest: +ELLIPSIS 30.3638017... """ X, Y, Z = tsplit(XYZ) X_0, Y_0, Z_0 = tsplit(XYZ_0) WI = 0.333 * Y + 125 * (Z / Z_0) - 125 * (X / X_0) return WI
[docs]def whiteness_Taube1960(XYZ, XYZ_0): """ Returns the *whiteness* index :math:`WI` of given sample *CIE XYZ* tristimulus values using Taube (1960) method. [2]_ Parameters ---------- XYZ : array_like *CIE XYZ* tristimulus values of sample. XYZ_0 : array_like *CIE XYZ* tristimulus values of reference white. Returns ------- numeric or ndarray *Whiteness* :math:`WI`. Notes ----- - Input *CIE XYZ* and *CIE XYZ_0* tristimulus values are in domain [0, 100]. - *Whiteness* :math:`WI` values larger than 100 indicate a bluish white, and values smaller than 100 indicate a yellowish white. Examples -------- >>> XYZ = np.array([95.00000000, 100.00000000, 105.00000000]) >>> XYZ_0 = np.array([94.80966767, 100.00000000, 107.30513595]) >>> whiteness_Taube1960(XYZ, XYZ_0) # doctest: +ELLIPSIS 91.4071738... """ X, Y, Z = tsplit(XYZ) X_0, Y_0, Z_0 = tsplit(XYZ_0) WI = 400 * (Z / Z_0) - 3 * Y return WI
[docs]def whiteness_Stensby1968(Lab): """ Returns the *whiteness* index :math:`WI` of given sample *CIE Lab* colourspace array using Stensby (1968) method. [2]_ Parameters ---------- Lab : array_like *CIE Lab* colourspace array of sample. Returns ------- numeric or ndarray *Whiteness* :math:`WI`. Notes ----- - Input *CIE Lab* colourspace array is in domain [0, 100]. - *Whiteness* :math:`WI` values larger than 100 indicate a bluish white, and values smaller than 100 indicate a yellowish white. Examples -------- >>> Lab = np.array([100.00000000, -2.46875131, -16.72486654]) >>> whiteness_Stensby1968(Lab) # doctest: +ELLIPSIS 142.7683456... """ L, a, b = tsplit(Lab) WI = L - 3 * b + 3 * a return WI
[docs]def whiteness_ASTM313(XYZ): """ Returns the *whiteness* index :math:`WI` of given sample *CIE XYZ* tristimulus values using ASTM 313 method. [2]_ Parameters ---------- XYZ : array_like *CIE XYZ* tristimulus values of sample. Returns ------- numeric or ndarray *Whiteness* :math:`WI`. Notes ----- - Input *CIE XYZ* tristimulus values are in domain [0, 100]. Warning ------- The input domain of that definition is non standard! Examples -------- >>> XYZ = np.array([95.00000000, 100.00000000, 105.00000000]) >>> whiteness_ASTM313(XYZ) # doctest: +ELLIPSIS 55.7400000... """ X, Y, Z = tsplit(XYZ) WI = 3.388 * Z - 3 * Y return WI
[docs]def whiteness_Ganz1979(xy, Y): """ Returns the *whiteness* index :math:`W` and *tint* :math:`T` of given sample *xy* chromaticity coordinates using Ganz and Griesser (1979) method. [2]_ Parameters ---------- xy : array_like Chromaticity coordinates *xy* of sample. Y : numeric or array_like Tristimulus :math:`Y` value of sample. Returns ------- ndarray *Whiteness* :math:`W` and *tint* :math:`T`. Notes ----- - Input tristimulus :math:`Y` value is in domain [0, 100]. - The formula coefficients are valid for *CIE Standard Illuminant D Series* *D65* and *CIE 1964 10 Degree Standard Observer*. - Positive output *tint* :math:`T` values indicate a greener tint while negative values indicate a redder tint. - Whiteness differences of less than 5 Ganz units appear to be indistinguishable to the human eye. - Tint differences of less than 0.5 Ganz units appear to be indistinguishable to the human eye. Warning ------- The input domain of that definition is non standard! Examples -------- >>> xy = np.array([0.3167, 0.3334]) >>> whiteness_Ganz1979(xy, 100) # doctest: +ELLIPSIS array([ 85.6003766..., 0.6789003...]) """ x, y = tsplit(xy) Y = np.asarray(Y) W = Y - 1868.322 * x - 3695.690 * y + 1809.441 T = -1001.223 * x + 748.366 * y + 68.261 WT = tstack((W, T)) return WT
[docs]def whiteness_CIE2004(xy, Y, xy_n, observer='CIE 1931 2 Degree Standard Observer'): """ Returns the *whiteness* :math:`W` or :math:`W_{10}` and *tint* :math:`T` or :math:`T_{10}` of given sample *xy* chromaticity coordinates using CIE 2004 method. Parameters ---------- xy : array_like Chromaticity coordinates *xy* of sample. Y : numeric or array_like Tristimulus :math:`Y` value of sample. xy_n : array_like Chromaticity coordinates *xy_n* of perfect diffuser. observer : unicode, optional {'CIE 1931 2 Degree Standard Observer', 'CIE 1964 10 Degree Standard Observer'} *CIE Standard Observer* used for computations, *tint* :math:`T` or :math:`T_{10}` value is dependent on viewing field angular subtense. Returns ------- ndarray *Whiteness* :math:`W` or :math:`W_{10}` and *tint* :math:`T` or :math:`T_{10}` of given sample. Notes ----- - Input tristimulus :math:`Y` value is in domain [0, 100]. - This method may be used only for samples whose values of :math:`W` or :math:`W_{10}` lie within the following limits: greater than 40 and less than 5Y - 280, or 5Y10 - 280. - This method may be used only for samples whose values of :math:`T` or :math:`T_{10}` lie within the following limits: greater than -4 and less than +2. - Output *whiteness* :math:`W` or :math:`W_{10}` values larger than 100 indicate a bluish white while values smaller than 100 indicate a yellowish white. [2]_ - Positive output *tint* :math:`T` or :math:`T_{10}` values indicate a greener tint while negative values indicate a redder tint. Warning ------- The input domain of that definition is non standard! References ---------- .. [4] CIE TC 1-48. (2004). The evaluation of whiteness. In CIE 015:2004 Colorimetry, 3rd Edition (p. 24). ISBN:978-3-901-90633-6 Examples -------- >>> xy = np.array([0.3167, 0.3334]) >>> xy_n = np.array([0.3139, 0.3311]) >>> whiteness_CIE2004(xy, 100, xy_n) # doctest: +ELLIPSIS array([ 93.85..., -1.305...]) """ x, y = tsplit(xy) Y = np.asarray(Y) x_n, y_n = tsplit(xy_n) W = Y + 800 * (x_n - x) + 1700 * (y_n - y) T = (1000 if '1931' in observer else 900) * (x_n - x) - 650 * (y_n - y) WT = tstack((W, T)) return WT
WHITENESS_METHODS = CaseInsensitiveMapping( {'Berger 1959': whiteness_Berger1959, 'Taube 1960': whiteness_Taube1960, 'Stensby 1968': whiteness_Stensby1968, 'ASTM 313': whiteness_ASTM313, 'Ganz 1979': whiteness_Ganz1979, 'CIE 2004': whiteness_CIE2004}) """ Supported *whiteness* computations methods. WHITENESS_METHODS : CaseInsensitiveMapping {'CIE 2004', 'Berger 1959', 'Taube 1960', 'Stensby 1968', 'ASTM 313', 'Ganz 1979', 'CIE 2004'} Aliases: - 'cie2004': 'CIE 2004' """ WHITENESS_METHODS['cie2004'] = WHITENESS_METHODS['CIE 2004']
[docs]def whiteness(method='CIE 2004', **kwargs): """ Returns the *whiteness* :math:`W` using given method. Parameters ---------- method : unicode, optional {'CIE 2004', 'Berger 1959', 'Taube 1960', 'Stensby 1968', 'ASTM 313', 'Ganz 1979', 'CIE 2004'} Computation method. \*\*kwargs : \*\* Keywords arguments. Returns ------- numeric or ndarray *whiteness* :math:`W`. Examples -------- >>> xy = np.array([0.3167, 0.3334]) >>> Y = 100 >>> xy_n = np.array([0.3139, 0.3311]) >>> whiteness(xy=xy, Y=Y, xy_n=xy_n) # doctest: +ELLIPSIS array([ 93.85..., -1.305...]) >>> XYZ = np.array([95.00000000, 100.00000000, 105.00000000]) >>> XYZ_0 = np.array([94.80966767, 100.00000000, 107.30513595]) >>> method = 'Taube 1960' >>> whiteness(XYZ=XYZ, XYZ_0=XYZ_0, method=method) # doctest: +ELLIPSIS 91.4071738... """ return WHITENESS_METHODS.get(method)(**kwargs)