#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
CIE xyY Colourspace
===================
Defines the *CIE xyY* colourspace transformations:
- :func:`XYZ_to_xyY`
- :func:`xyY_to_XYZ`
- :func:`xy_to_XYZ`
- :func:`XYZ_to_xy`
See Also
--------
`CIE xyY Colourspace IPython Notebook
<http://nbviewer.ipython.org/github/colour-science/colour-ipython/blob/master/notebooks/models/cie_xyy.ipynb>`_ # noqa
References
----------
.. [1] Wikipedia. (n.d.). CIE 1931 color space. Retrieved February 24, 2014,
from http://en.wikipedia.org/wiki/CIE_1931_color_space
"""
from __future__ import division, unicode_literals
import numpy as np
from colour.colorimetry import ILLUMINANTS
from colour.utilities import tsplit, tstack
__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013 - 2015 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'
__all__ = ['XYZ_to_xyY',
'xyY_to_XYZ',
'xy_to_XYZ',
'XYZ_to_xy']
[docs]def XYZ_to_xyY(XYZ,
illuminant=ILLUMINANTS.get(
'CIE 1931 2 Degree Standard Observer').get('D50')):
"""
Converts from *CIE XYZ* tristimulus values to *CIE xyY* colourspace and
reference *illuminant*.
Parameters
----------
XYZ : array_like
*CIE XYZ* tristimulus values.
illuminant : array_like, optional
Reference *illuminant* chromaticity coordinates.
Returns
-------
ndarray
*CIE xyY* colourspace array.
Notes
-----
- Input *CIE XYZ* tristimulus values are in domain [0, 1].
- Output *CIE xyY* colourspace array is in domain [0, 1].
References
----------
.. [2] Lindbloom, B. (2003). XYZ to xyY. Retrieved February 24, 2014,
from http://www.brucelindbloom.com/Eqn_XYZ_to_xyY.html
Examples
--------
>>> XYZ = np.array([0.07049534, 0.10080000, 0.09558313])
>>> XYZ_to_xyY(XYZ) # doctest: +ELLIPSIS
array([ 0.2641477..., 0.3777000..., 0.1008 ])
"""
XYZ = np.asarray(XYZ)
X, Y, Z = tsplit(XYZ)
xy_w = np.asarray(illuminant)
XYZ_n = np.zeros(XYZ.shape)
XYZ_n[..., 0:2] = xy_w
xyY = np.where(
np.all(XYZ == 0, axis=-1)[..., np.newaxis],
XYZ_n,
tstack((X / (X + Y + Z), Y / (X + Y + Z), Y)))
return xyY
[docs]def xyY_to_XYZ(xyY):
"""
Converts from *CIE xyY* colourspace to *CIE XYZ* tristimulus values.
Parameters
----------
xyY : array_like
*CIE xyY* colourspace array.
Returns
-------
ndarray
*CIE XYZ* tristimulus values.
Notes
-----
- Input *CIE xyY* colourspace array is in domain [0, 1].
- Output *CIE XYZ* tristimulus values are in domain [0, 1].
References
----------
.. [3] Lindbloom, B. (2009). xyY to XYZ. Retrieved February 24, 2014,
from http://www.brucelindbloom.com/Eqn_xyY_to_XYZ.html
Examples
--------
>>> xyY = np.array([0.26414772, 0.37770001, 0.10080000])
>>> xyY_to_XYZ(xyY) # doctest: +ELLIPSIS
array([ 0.0704953..., 0.1008 , 0.0955831...])
"""
x, y, Y = tsplit(xyY)
XYZ = np.where((y == 0)[..., np.newaxis],
tstack((y, y, y)),
tstack((x * Y / y, Y, (1 - x - y) * Y / y)))
return XYZ
[docs]def xy_to_XYZ(xy):
"""
Returns the *CIE XYZ* tristimulus values from given *xy* chromaticity
coordinates.
Parameters
----------
xy : array_like
*xy* chromaticity coordinates.
Returns
-------
ndarray
*CIE XYZ* tristimulus values.
Notes
-----
- Input *xy* chromaticity coordinates are in domain [0, 1].
- Output *CIE XYZ* tristimulus values are in domain [0, 1].
Examples
--------
>>> xy = np.array([0.26414772236966133, 0.37770000704815188])
>>> xy_to_XYZ(xy) # doctest: +ELLIPSIS
array([ 0.6993585..., 1. , 0.9482453...])
"""
x, y = tsplit(xy)
xyY = tstack((x, y, np.ones(x.shape)))
XYZ = xyY_to_XYZ(xyY)
return XYZ
[docs]def XYZ_to_xy(XYZ,
illuminant=ILLUMINANTS.get(
'CIE 1931 2 Degree Standard Observer').get('D50')):
"""
Returns the *xy* chromaticity coordinates from given *CIE XYZ* tristimulus
values.
Parameters
----------
XYZ : array_like
*CIE XYZ* tristimulus values.
illuminant : array_like, optional
Reference *illuminant* chromaticity coordinates.
Returns
-------
ndarray
*xy* chromaticity coordinates.
Notes
-----
- Input *CIE XYZ* tristimulus values are in domain [0, 1].
- Output *xy* chromaticity coordinates are in domain [0, 1].
Examples
--------
>>> XYZ = np.array([0.07049534, 0.10080000, 0.09558313])
>>> XYZ_to_xy(XYZ) # doctest: +ELLIPSIS
array([ 0.2641477..., 0.3777000...])
"""
xyY = XYZ_to_xyY(XYZ, illuminant)
xy = xyY[..., 0:2]
return xy