Source code for colour.utilities.common

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Common Utilities
================

Defines common utilities objects that don't fall in any specific category.
"""

from __future__ import division, unicode_literals

import functools
import numpy as np
import warnings

from colour.constants import INTEGER_THRESHOLD

__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013 - 2015 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'

__all__ = ['handle_numpy_errors',
           'ignore_numpy_errors',
           'raise_numpy_errors',
           'print_numpy_errors',
           'warn_numpy_errors',
           'ignore_python_warnings',
           'batch',
           'is_openimageio_installed',
           'is_scipy_installed',
           'is_iterable',
           'is_string',
           'is_numeric',
           'is_integer']


[docs]def handle_numpy_errors(**kwargs): """ Decorator for handling *Numpy* errors. Parameters ---------- \*\*kwargs : \*\* Keywords arguments. Returns ------- object References ---------- .. [1] Kienzle, P., Patel, N., & Krycka, J. (2011). refl1d.numpyerrors - Refl1D v0.6.19 documentation. Retrieved January 30, 2015, from http://www.reflectometry.org/danse/docs/refl1d/_modules/refl1d/numpyerrors.html # noqa Examples -------- >>> import numpy >>> @handle_numpy_errors(all='ignore') ... def f(): ... 1 / numpy.zeros(3) >>> f() """ context = np.errstate(**kwargs) def wrapper(object): @functools.wraps(object) def wrapped(*args, **kwargs): with context: return object(*args, **kwargs) return wrapped return wrapper
ignore_numpy_errors = handle_numpy_errors(all='ignore') raise_numpy_errors = handle_numpy_errors(all='raise') print_numpy_errors = handle_numpy_errors(all='print') warn_numpy_errors = handle_numpy_errors(all='warn')
[docs]def ignore_python_warnings(object): """ Decorator for ignoring *Python* warnings. Parameters ---------- object : object Object to decorate. Returns ------- object Examples -------- >>> @ignore_python_warnings ... def f(): ... warnings.warn('This is an ignored warning!') >>> f() """ @functools.wraps(object) def wrapped(*args, **kwargs): with warnings.catch_warnings(): warnings.simplefilter('ignore') return object(*args, **kwargs) return wrapped
[docs]def batch(iterable, k=3): """ Returns a batch generator from given iterable. Parameters ---------- iterable : iterable Iterable to create batches from. k : integer Batches size. Returns ------- bool Is *string_like* variable. Examples -------- >>> batch(tuple(range(10))) # doctest: +ELLIPSIS <generator object batch at 0x...> """ for i in range(0, len(iterable), k): yield iterable[i:i + k]
[docs]def is_openimageio_installed(raise_exception=False): """ Returns if *OpenImageIO* is installed and available. Parameters ---------- raise_exception : bool Raise exception if *OpenImageIO* is unavailable. Returns ------- bool Is *OpenImageIO* installed. Raises ------ ImportError If *OpenImageIO* is not installed. """ try: import OpenImageIO return True except ImportError as error: if raise_exception: raise ImportError(('"OpenImageIO" related Api features ' 'are not available: "{0}".').format(error)) return False
[docs]def is_scipy_installed(raise_exception=False): """ Returns if *scipy* is installed and available. Parameters ---------- raise_exception : bool Raise exception if *scipy* is unavailable. Returns ------- bool Is *scipy* installed. Raises ------ ImportError If *scipy* is not installed. """ try: # Importing *scipy* Api features used in *Colour*. import scipy.interpolate import scipy.ndimage import scipy.spatial return True except ImportError as error: if raise_exception: raise ImportError(('"scipy" or specific "scipy" Api features ' 'are not available: "{0}".').format(error)) return False
[docs]def is_iterable(x): """ Returns if given :math:`x` variable is iterable. Parameters ---------- x : object Variable to check the iterability. Returns ------- bool :math:`x` variable iterability. Examples -------- >>> is_iterable([1, 2, 3]) True >>> is_iterable(1) False """ try: for _ in x: break return True except TypeError: return False
[docs]def is_string(data): """ Returns if given data is a *string_like* variable. Parameters ---------- data : object Data to test. Returns ------- bool Is *string_like* variable. Examples -------- >>> is_string('I`m a string!') True >>> is_string(['I`m a string!']) False """ return True if isinstance(data, basestring) else False
[docs]def is_numeric(x): """ Returns if given :math:`x` variable is a number. Parameters ---------- x : object Variable to check. Returns ------- bool Is :math:`x` variable a number. See Also -------- is_integer Examples -------- >>> is_numeric(1) True >>> is_numeric((1,)) False """ return isinstance(x, (int, float, complex, np.integer, np.floating, np.complex))
[docs]def is_integer(x): """ Returns if given :math:`x` variable is an integer under given threshold. Parameters ---------- x : object Variable to check. Returns ------- bool Is :math:`x` variable an integer. Notes ----- - The determination threshold is defined by the :attr:`colour.algebra.common.INTEGER_THRESHOLD` attribute. See Also -------- is_numeric Examples -------- >>> is_integer(1) True >>> is_integer(1.01) False """ return abs(x - round(x)) <= INTEGER_THRESHOLD