Bases: colour.appearance.hunt.Hunt_InductionFactors
Hunt colour appearance model induction factors.
Parameters: |
|
---|
Bases: colour.appearance.hunt.Hunt_Specification
Defines the Hunt colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
Parameters: |
|
---|
Computes the Hunt colour appearance model correlates.
Parameters: |
|
---|
Warning
The input domain of that definition is non standard!
Notes
Returns: | Hunt colour appearance model specification. |
---|---|
Return type: | Hunt_Specification |
Raises: | ValueError – If an illegal arguments combination is specified. |
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> XYZ_b = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> surround = HUNT_VIEWING_CONDITIONS['Normal Scenes']
>>> CCT_w = 6504.0
>>> XYZ_to_Hunt(XYZ, XYZ_w, XYZ_b, L_A, surround, CCT_w=CCT_w)
Hunt_Specification(J=30.0462678..., C=0.1210508..., h=269.2737594..., s=0.0199093..., Q=22.2097654..., M=0.1238964..., H=None, HC=None)
Bases: colour.appearance.atd95.ATD95_Specification
Defines the ATD (1995) colour vision model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
Notes
Parameters: |
|
---|
Computes the ATD (1995) colour vision model correlates.
Parameters: |
|
---|---|
Returns: | ATD (1995) colour vision model specification. |
Return type: | ATD95_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_0 = np.array([95.05, 100.00, 108.88])
>>> Y_0 = 318.31
>>> k_1 = 0.0
>>> k_2 = 50.0
>>> XYZ_to_ATD95(XYZ, XYZ_0, Y_0, k_1, k_2)
ATD95_Specification(h=1.9089869..., C=1.2064060..., Q=0.1814003..., A_1=0.1787931... T_1=0.0286942..., D_1=0.0107584..., A_2=0.0192182..., T_2=0.0205377..., D_2=0.0107584...)
Bases: colour.appearance.ciecam02.CIECAM02_InductionFactors
CIECAM02 colour appearance model induction factors.
Parameters: |
|
---|
Bases: colour.appearance.ciecam02.CIECAM02_Specification
Defines the CIECAM02 colour appearance model specification.
Parameters: |
|
---|
Computes the CIECAM02 colour appearance model correlates from given CIE XYZ tristimulus values.
This is the forward implementation.
Parameters: |
|
---|---|
Returns: | CIECAM02 colour appearance model specification. |
Return type: | CIECAM02_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> Y_b = 20.0
>>> surround = CIECAM02_VIEWING_CONDITIONS['Average']
>>> XYZ_to_CIECAM02(XYZ, XYZ_w, L_A, Y_b, surround)
CIECAM02_Specification(J=41.7310911..., C=0.1047077..., h=219.0484326..., s=2.3603053..., Q=195.3713259..., M=0.1088421..., H=array(278.0607358...), HC=None)
Converts CIECAM02 specification to CIE XYZ tristimulus values.
This is the reverse implementation.
Parameters: |
|
---|---|
Returns: | XYZ – CIE XYZ tristimulus values. |
Return type: | ndarray |
Warning
The output domain of that definition is non standard!
Notes
Examples
>>> J = 41.731091132513917
>>> C = 0.1047077571711053
>>> h = 219.04843265827190
>>> XYZ_w = np.array([95.05, 100.00, 108.88])
>>> L_A = 318.31
>>> Y_b = 20.0
>>> CIECAM02_to_XYZ(J, C, h, XYZ_w, L_A, Y_b)
array([ 19.01..., 20... , 21.78...])
Bases: colour.appearance.llab.LLAB_Specification
Defines the LLAB(l:c) colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
Parameters: |
|
---|
Computes the LLAB(l:c) colour appearance model correlates.
Parameters: |
|
---|---|
Returns: | LLAB(l:c) colour appearance model specification. |
Return type: | LLAB_Specification |
Warning
The output domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_0 = np.array([95.05, 100.00, 108.88])
>>> Y_b = 20.0
>>> L = 318.31
>>> surround = LLAB_VIEWING_CONDITIONS['ref_average_4_minus']
>>> XYZ_to_LLAB(XYZ, XYZ_0, Y_b, L, surround)
LLAB_Specification(J=37.3668650..., C=0.0089496..., h=270.0000000..., s=0.0002395..., M=0.0190185..., HC=None, a=1.4742890..., b=-0.0190185...)
Bases: colour.appearance.nayatani95.Nayatani95_Specification
Defines the Nayatani (1995) colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
Parameters: |
|
---|
Computes the Nayatani (1995) colour appearance model correlates.
Parameters: |
|
---|---|
Returns: | Nayatani (1995) colour appearance model specification. |
Return type: | Nayatani95_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_n = np.array([95.05, 100.00, 108.88])
>>> Y_o = 20.0
>>> E_o = 5000.0
>>> E_or = 1000.0
>>> XYZ_to_Nayatani95(XYZ, XYZ_n, Y_o, E_o, E_or)
Nayatani95_Specification(Lstar_P=49.9998829..., C=0.0133550..., h=257.5232268..., s=0.0133550..., Q=62.6266734..., M=0.0167262..., H=None, HC=None, Lstar_N=50.0039154...)
Bases: colour.appearance.rlab.RLAB_Specification
Defines the RLAB colour appearance model specification.
This specification has field names consistent with the remaining colour appearance models in colour.appearance but diverge from Fairchild (2013) reference.
Parameters: |
|
---|
Computes the RLAB model color appearance correlates.
Parameters: |
|
---|---|
Returns: | RLAB colour appearance model specification. |
Return type: | RLAB_Specification |
Warning
The input domain of that definition is non standard!
Notes
Examples
>>> XYZ = np.array([19.01, 20.00, 21.78])
>>> XYZ_n = np.array([109.85, 100, 35.58])
>>> Y_n = 31.83
>>> sigma = RLAB_VIEWING_CONDITIONS['Average']
>>> D = RLAB_D_FACTOR['Hard Copy Images']
>>> XYZ_to_RLAB(XYZ, XYZ_n, Y_n, sigma, D)
RLAB_Specification(J=49.8347069..., C=54.8700585..., h=286.4860208..., s=1.1010410..., HC=None, a=15.5711021..., b=-52.6142956...)