Defines the classes handling spectral data computation:
See also
Bases: object
Defines the base object for spectral power distribution shape.
Parameters: |
|
---|
Examples
>>> SpectralShape(360, 830, 1)
SpectralShape(360, 830, 1)
Returns if the spectral shape contains given wavelength \(\lambda\).
Parameters: | wavelength (numeric or array_like) – Wavelength \(\lambda\). |
---|---|
Returns: | Is wavelength \(\lambda\) contained in the spectral shape. |
Return type: | bool |
Warning
wavelength argument is tested to be contained in the spectral shape within the tolerance defined by colour.constants.common.EPSILON attribute value.
Notes
Examples
>>> 0.5 in SpectralShape(0, 10, 0.1)
True
>>> 0.6 in SpectralShape(0, 10, 0.1)
True
>>> 0.51 in SpectralShape(0, 10, 0.1)
False
>>> np.array([0.5, 0.6]) in SpectralShape(0, 10, 0.1)
True
>>> np.array([0.51, 0.6]) in SpectralShape(0, 10, 0.1)
False
Returns the spectral shape equality with given other spectral shape.
Parameters: | shape (SpectralShape) – Spectral shape to compare for equality. |
---|---|
Returns: | Spectral shape equality. |
Return type: | bool |
Notes
Examples
>>> SpectralShape(0, 10, 0.1) == SpectralShape(0, 10, 0.1)
True
>>> SpectralShape(0, 10, 0.1) == SpectralShape(0, 10, 1)
False
Returns a generator for the spectral power distribution data.
Returns: | Spectral power distribution data generator. |
---|---|
Return type: | generator |
Notes
Examples
>>> shape = SpectralShape(0, 10, 1)
>>> for wavelength in shape: print(wavelength)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0
10.0
Returns the spectral shape wavelength \(\lambda_n\) count.
Returns: | Spectral shape wavelength \(\lambda_n\) count. |
---|---|
Return type: | int |
Notes
Examples
>>> len(SpectralShape(0, 10, 0.1))
101
Returns the spectral shape inequality with given other spectral shape.
Parameters: | shape (SpectralShape) – Spectral shape to compare for inequality. |
---|---|
Returns: | Spectral shape inequality. |
Return type: | bool |
Notes
Examples
>>> SpectralShape(0, 10, 0.1) != SpectralShape(0, 10, 0.1)
False
>>> SpectralShape(0, 10, 0.1) != SpectralShape(0, 10, 1)
True
Returns a formatted string representation.
Returns: | Formatted string representation. |
---|---|
Return type: | unicode |
Returns a nice formatted string representation.
Returns: | Nice formatted string representation. |
---|---|
Return type: | unicode |
Property for self.__end private attribute.
Returns: | self.__end. |
---|---|
Return type: | numeric |
Returns an iterable range for the spectral power distribution shape.
Returns: | Iterable range for the spectral power distribution shape |
---|---|
Return type: | ndarray |
Raises: | RuntimeError – If one of spectral shape start, end or steps attributes is not defined. |
Examples
>>> SpectralShape(0, 10, 0.1).range()
array([ 0. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1. , 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,
1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,
2.7, 2.8, 2.9, 3. , 3.1, 3.2, 3.3, 3.4, 3.5,
3.6, 3.7, 3.8, 3.9, 4. , 4.1, 4.2, 4.3, 4.4,
4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2, 5.3,
5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2,
6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7. , 7.1,
7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8. ,
8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9,
9. , 9.1, 9.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.8,
9.9, 10. ])
Property for self.__start private attribute.
Returns: | self.__start. |
---|---|
Return type: | numeric |
Property for self.__steps private attribute.
Returns: | self.__steps. |
---|---|
Return type: | numeric |
Bases: object
Defines the base object for spectral data computations.
Parameters: |
|
---|
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.wavelengths
array([510, 520, 530, 540])
>>> spd.values
array([ 49.67, 69.59, 81.73, 88.19])
>>> spd.shape
SpectralShape(510, 540, 10)
Implements support for spectral power distribution addition.
Parameters: | x (numeric or array_like or SpectralPowerDistribution) – Variable to add. |
---|---|
Returns: | Variable added spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
SpectralPowerDistribution.__sub__(), SpectralPowerDistribution.__mul__(), SpectralPowerDistribution.__div__()
Notes
Warning
The addition operation happens in place.
Examples
Adding a single numeric variable:
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd + 10
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 59.67, 79.59, 91.73, 98.19])
Adding an array_like variable:
>>> spd + [1, 2, 3, 4]
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 60.67, 81.59, 94.73, 102.19])
Adding a SpectralPowerDistribution class variable:
>>> spd_alternate = SpectralPowerDistribution('Spd', data)
>>> spd + spd_alternate
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 110.34, 151.18, 176.46, 190.38])
Returns if the spectral power distribution contains given wavelength \(\lambda\).
Parameters: | wavelength (numeric or array_like) – Wavelength \(\lambda\). |
---|---|
Returns: | Is wavelength \(\lambda\) contained in the spectral power distribution. |
Return type: | bool |
Warning
wavelength argument is tested to be contained in the spectral power distribution within the tolerance defined by colour.constants.common.EPSILON attribute value.
Notes
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> 510 in spd
True
>>> np.array([510, 520]) in spd
True
>>> np.array([510, 520, 521]) in spd
False
Implements support for spectral power distribution division.
Parameters: | x (numeric or array_like or SpectralPowerDistribution) – Variable to divide. |
---|---|
Returns: | Variable divided spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
SpectralPowerDistribution.__add__(), SpectralPowerDistribution.__sub__(), SpectralPowerDistribution.__mul__()
Notes
Warning
The division operation happens in place.
Examples
Dividing a single numeric variable:
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd / 10
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 4.967, 6.959, 8.173, 8.819])
Dividing an array_like variable:
>>> spd / [1, 2, 3, 4]
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 4.967 , 3.4795 , 2.72433333, 2.20475 ])
Dividing a SpectralPowerDistribution class variable:
>>> spd_alternate = SpectralPowerDistribution('Spd', data)
>>> spd / spd_alternate
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 0.1 , 0.05 , 0.0333333..., 0.025 ])
Returns the spectral power distribution equality with given other spectral power distribution.
Parameters: | spd (SpectralPowerDistribution) – Spectral power distribution to compare for equality. |
---|---|
Returns: | Spectral power distribution equality. |
Return type: | bool |
Notes
Examples
>>> data1 = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> data2 = {510: 48.6700, 520: 69.5900, 530: 81.7300, 540: 88.1900}
>>> spd1 = SpectralPowerDistribution('Spd', data1)
>>> spd2 = SpectralPowerDistribution('Spd', data2)
>>> spd3 = SpectralPowerDistribution('Spd', data2)
>>> spd1 == spd2
False
>>> spd2 == spd3
True
Returns the value for given wavelength \(\lambda\).
Parameters: | wavelength (numeric, array_like or slice) – Wavelength \(\lambda\) to retrieve the value. |
---|---|
Returns: | Wavelength \(\lambda\) value. |
Return type: | numeric or ndarray |
See also
Notes
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> spd[510]
array(49.67...)
>>> spd[np.array([510, 520])]
array([ 49.67, 69.59])
>>> spd[:]
array([ 49.67, 69.59, 81.73, 88.19])
Returns the spectral power distribution hash value.
Returns: | Object hash. |
---|---|
Return type: | int |
Notes
Warning
SpectralPowerDistribution class is mutable and should not be hashable. However, so that it can be used as a key in some data caches, we provide a __hash__ implementation, assuming that the underlying data will not change for those specific cases.
References
[1] | Hettinger, R. (n.d.). Python hashable dicts. Retrieved August 08, 2014, from http://stackoverflow.com/a/16162138/931625 |
Returns a generator for the spectral power distribution data.
Returns: | Spectral power distribution data generator. |
---|---|
Return type: | generator |
Notes
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> for wavelength, value in spd:
... print((wavelength, value))
(510, 49.6...)
(520, 69.5...)
(530, 81.7...)
(540, 88.1...)
Returns the spectral power distribution wavelengths \(\lambda_n\) count.
Returns: | Spectral power distribution wavelengths \(\lambda_n\) count. |
---|---|
Return type: | int |
Notes
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> len(spd)
4
Implements support for spectral power distribution multiplication.
Parameters: | x (numeric or array_like or SpectralPowerDistribution) – Variable to multiply. |
---|---|
Returns: | Variable multiplied spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
SpectralPowerDistribution.__add__(), SpectralPowerDistribution.__sub__(), SpectralPowerDistribution.__div__()
Notes
Warning
The multiplication operation happens in place.
Examples
Multiplying a single numeric variable:
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd * 10
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 496.7, 695.9, 817.3, 881.9])
Multiplying an array_like variable:
>>> spd * [1, 2, 3, 4]
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 496.7, 1391.8, 2451.9, 3527.6])
Multiplying a SpectralPowerDistribution class variable:
>>> spd_alternate = SpectralPowerDistribution('Spd', data)
>>> spd * spd_alternate
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 24671.089, 96855.362, 200393.787, 311099.044])
Returns the spectral power distribution inequality with given other spectral power distribution.
Parameters: | spd (SpectralPowerDistribution) – Spectral power distribution to compare for inequality. |
---|---|
Returns: | Spectral power distribution inequality. |
Return type: | bool |
Notes
Examples
>>> data1 = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> data2 = {510: 48.6700, 520: 69.5900, 530: 81.7300, 540: 88.1900}
>>> spd1 = SpectralPowerDistribution('Spd', data1)
>>> spd2 = SpectralPowerDistribution('Spd', data2)
>>> spd3 = SpectralPowerDistribution('Spd', data2)
>>> spd1 != spd2
True
>>> spd2 != spd3
False
Implements support for spectral power distribution exponentiation.
Parameters: | x (numeric or array_like or SpectralPowerDistribution) – Variable to exponentiate by. |
---|---|
Returns: | Spectral power distribution raised by power of x. |
Return type: | SpectralPowerDistribution |
See also
SpectralPowerDistribution.__add__(), SpectralPowerDistribution.__sub__(), SpectralPowerDistribution.__mul__(), SpectralPowerDistribution.__div__()
Notes
Warning
The power operation happens in place.
Examples
Exponentiation by a single numeric variable:
>>> data = {510: 1.67, 520: 2.59, 530: 3.73, 540: 4.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd ** 2
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 2.7889, 6.7081, 13.9129, 17.5561])
Exponentiation by an array_like variable:
>>> spd ** [1, 2, 3, 4]
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 2.7889000...e+00, 4.4998605...e+01, 2.6931031...e+03,
9.4997501...e+04])
Exponentiation by a SpectralPowerDistribution class variable:
>>> spd_alternate = SpectralPowerDistribution('Spd', data)
>>> spd ** spd_alternate
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 5.5446356...e+00, 1.9133109...e+04, 6.2351033...e+12,
7.1880990...e+20])
Sets the wavelength \(\lambda\) with given value.
Parameters: |
|
---|
Warning
value parameter is resized to match wavelength parameter size.
Notes
Examples
>>> spd = SpectralPowerDistribution('Spd', {})
>>> spd[510] = 49.67
>>> spd.values
array([ 49.67])
>>> spd[np.array([520, 530])] = np.array([69.59, 81.73])
>>> spd.values
array([ 49.67, 69.59, 81.73])
>>> spd[np.array([540, 550])] = 88.19
>>> spd.values
array([ 49.67, 69.59, 81.73, 88.19, 88.19])
>>> spd[:] = 49.67
>>> spd.values
array([ 49.67, 49.67, 49.67, 49.67, 49.67])
Implements support for spectral power distribution subtraction.
Parameters: | x (numeric or array_like or SpectralPowerDistribution) – Variable to subtract. |
---|---|
Returns: | Variable subtracted spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
SpectralPowerDistribution.__add__(), SpectralPowerDistribution.__mul__(), SpectralPowerDistribution.__div__()
Notes
Warning
The subtraction operation happens in place.
Examples
Subtracting a single numeric variable:
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd - 10
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 39.67, 59.59, 71.73, 78.19])
Subtracting an array_like variable:
>>> spd - [1, 2, 3, 4]
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 38.67, 57.59, 68.73, 74.19])
Subtracting a SpectralPowerDistribution class variable:
>>> spd_alternate = SpectralPowerDistribution('Spd', data)
>>> spd - spd_alternate
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([-11., -12., -13., -14.])
Implements support for spectral power distribution division.
Parameters: | x (numeric or array_like or SpectralPowerDistribution) – Variable to divide. |
---|---|
Returns: | Variable divided spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
SpectralPowerDistribution.__add__(), SpectralPowerDistribution.__sub__(), SpectralPowerDistribution.__mul__()
Notes
Warning
The division operation happens in place.
Examples
Dividing a single numeric variable:
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd / 10
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 4.967, 6.959, 8.173, 8.819])
Dividing an array_like variable:
>>> spd / [1, 2, 3, 4]
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 4.967 , 3.4795 , 2.72433333, 2.20475 ])
Dividing a SpectralPowerDistribution class variable:
>>> spd_alternate = SpectralPowerDistribution('Spd', data)
>>> spd / spd_alternate
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 0.1 , 0.05 , 0.0333333..., 0.025 ])
Aligns the spectral power distribution to given spectral shape: Interpolates first then extrapolates to fit the given range.
Parameters: |
|
---|---|
Returns: | Aligned spectral power distribution. |
Return type: | SpectralPowerDistribution |
Examples
>>> data = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 86.26,
... 560: 77.18}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.align(SpectralShape(505, 565, 1))
<...SpectralPowerDistribution object at 0x...>
>>> # Doctests skip for Python 2.x compatibility.
>>> spd.wavelengths
array([505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517,
518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530,
531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543,
544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556,
557, 558, 559, 560, 561, 562, 563, 564, 565])
>>> spd.values
array([ 49.67 ..., 49.67 ..., 49.67 ..., 49.67 ...,
49.67 ..., 49.67 ..., 51.8341162..., 53.9856467...,
56.1229464..., 58.2366197..., 60.3121800..., 62.3327095...,
64.2815187..., 66.1448055..., 67.9143153..., 69.59 ...,
71.1759958..., 72.6627938..., 74.0465756..., 75.3329710...,
76.5339542..., 77.6647421..., 78.7406907..., 79.7741932...,
80.7715767..., 81.73 ..., 82.6407518..., 83.507872 ...,
84.3326333..., 85.109696 ..., 85.8292968..., 86.47944 ...,
87.0480863..., 87.525344 ..., 87.9056578..., 88.19 ...,
88.3858347..., 88.4975634..., 88.5258906..., 88.4696570...,
88.3266460..., 88.0943906..., 87.7709802..., 87.3558672...,
86.8506741..., 86.26 ..., 85.5911699..., 84.8503430...,
84.0434801..., 83.1771110..., 82.2583874..., 81.2951360...,
80.2959122..., 79.2700525..., 78.2277286..., 77.18 ...,
77.18 ..., 77.18 ..., 77.18 ..., 77.18 ..., 77.18 ])
Clones the spectral power distribution.
Most of the SpectralPowerDistribution class operations are conducted in-place. The SpectralPowerDistribution.clone() method provides a convenient way to copy the spectral power distribution to a new object.
Returns: | Cloned spectral power distribution. |
---|---|
Return type: | SpectralPowerDistribution |
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> print(spd)
<...SpectralPowerDistribution object at 0x...>
>>> spd_clone = spd.clone()
>>> print(spd_clone)
<...SpectralPowerDistribution object at 0x...>
Property for self.__data private attribute.
Returns: | self.__data. |
---|---|
Return type: | dict |
Extrapolates the spectral power distribution following CIE 15:2004 recommendation.
Parameters: |
|
---|---|
Returns: | Extrapolated spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
References
[2] | CIE TC 1-48. (2004). Extrapolation. In CIE 015:2004 Colorimetry, 3rd Edition (p. 24). ISBN:978-3-901-90633-6 |
[3] | CIE TC 1-38. (2005). EXTRAPOLATION. In CIE 167:2005 Recommended Practice for Tabulating Spectral Data for Use in Colour Computations (pp. 19–20). ISBN:978-3-901-90641-1 |
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.extrapolate(SpectralShape(400, 700)).shape
SpectralShape(400, 700, 10)
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> spd[400]
array(49.67...)
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> spd[700]
array(88.1...)
Returns the value for given wavelength \(\lambda\).
Parameters: |
|
---|---|
Returns: | Wavelength \(\lambda\) value. |
Return type: | numeric or ndarray |
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> spd.get(510)
array(49.67...)
>>> spd.get(511)
array(nan)
>>> spd.get(np.array([510, 520]))
array([ 49.67, 69.59])
Interpolates the spectral power distribution following CIE 167:2005 recommendations: the method developed by Sprague (1880) should be used for interpolating functions having a uniformly spaced independent variable and a Cubic Spline method for non-uniformly spaced independent variable.
Parameters: |
|
---|---|
Returns: | Interpolated spectral power distribution. |
Return type: | SpectralPowerDistribution |
Raises: |
|
See also
Notes
Warning
References
[4] | CIE TC 1-38. (2005). 9. INTERPOLATION. In CIE 167:2005 Recommended Practice for Tabulating Spectral Data for Use in Colour Computations (pp. 14–19). ISBN:978-3-901-90641-1 |
Examples
Uniform data is using Sprague (1880) interpolation by default:
>>> data = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 86.26,
... 560: 77.18}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.interpolate(SpectralShape(steps=1))
<...SpectralPowerDistribution object at 0x...>
>>> spd[515]
array(60.3121800...)
Non uniform data is using Cubic Spline interpolation by default:
>>> data = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 86.26,
... 560: 77.18}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd[511] = 31.41
>>> spd.interpolate(SpectralShape(steps=1))
<...SpectralPowerDistribution object at 0x...>
>>> spd[515]
array(21.4792222...)
Enforcing Linear interpolation:
>>> data = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 86.26,
... 560: 77.18}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.interpolate(SpectralShape(steps=1), method='Linear')
<...SpectralPowerDistribution object at 0x...>
>>> spd[515]
array(59.63...)
Returns if the spectral power distribution has uniformly spaced data.
Returns: | Is uniform. |
---|---|
Return type: | bool |
See also
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.is_uniform()
True
Breaking the steps by introducing a new wavelength \(\lambda\) value:
>>> spd[511] = 3.1415
>>> spd.is_uniform()
False
Property for self.items attribute. This is a convenient attribute used to iterate over the spectral power distribution.
Returns: | Spectral power distribution data generator. |
---|---|
Return type: | generator |
Property for self.__name private attribute.
Returns: | self.__name. |
---|---|
Return type: | unicode |
Normalises the spectral power distribution with given normalization factor.
Parameters: | factor (numeric, optional) – Normalization factor |
---|---|
Returns: | Normalised spectral power distribution. |
Return type: | SpectralPowerDistribution |
Examples
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.normalise()
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 0.5632157..., 0.7890917..., 0.9267490..., 1. ])
Property for self.shape attribute.
Returns the shape of the spectral power distribution in the form of a SpectralShape class instance.
Returns: | Spectral power distribution shape. |
---|---|
Return type: | SpectralShape |
See also
Notes
Warning
SpectralPowerDistribution.shape is read only.
Examples
Uniform spectral power distribution:
>>> data = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> SpectralPowerDistribution('Spd', data).shape
SpectralShape(510, 540, 10)
Non uniform spectral power distribution:
>>> data = {512.3: 49.67, 524.5: 69.59, 532.4: 81.73, 545.7: 88.19}
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> SpectralPowerDistribution('Spd', data).shape
SpectralShape(512.3, 545.7, 7...)
Property for self.__title private attribute.
Returns: | self.__title. |
---|---|
Return type: | unicode |
Property for self.values attribute.
Returns: | Spectral power distribution wavelengths \(\lambda_n\) values. |
---|---|
Return type: | ndarray |
Warning
SpectralPowerDistribution.values is read only.
Property for self.wavelengths attribute.
Returns: | Spectral power distribution wavelengths \(\lambda_n\). |
---|---|
Return type: | ndarray |
Warning
SpectralPowerDistribution.wavelengths is read only.
Zeros fills the spectral power distribution: Missing values will be replaced with zeros to fit the defined range.
Parameters: | shape (SpectralShape, optional) – Spectral shape used for zeros fill. |
---|---|
Returns: | Zeros filled spectral power distribution. |
Return type: | SpectralPowerDistribution |
Examples
>>> data = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 86.26,
... 560: 77.18}
>>> spd = SpectralPowerDistribution('Spd', data)
>>> spd.zeros(SpectralShape(505, 565, 1))
<...SpectralPowerDistribution object at 0x...>
>>> spd.values
array([ 0. , 0. , 0. , 0. , 0. , 49.67, 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 69.59,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 81.73, 0. , 0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 88.19, 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 86.26, 0. , 0. ,
0. , 0. , 0. , 0. , 0. , 0. , 0. , 77.18,
0. , 0. , 0. , 0. , 0. ])
Bases: object
Defines the base object for colour matching functions.
A compound of three SpectralPowerDistribution is used to store the underlying axis data.
Parameters: |
|
---|
See also
colour.colorimetry.cmfs.LMS_ConeFundamentals, colour.colorimetry.cmfs.RGB_ColourMatchingFunctions, colour.colorimetry.cmfs.XYZ_ColourMatchingFunctions
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.wavelengths
array([510, 520, 530, 540])
>>> tri_spd.values
array([[ 49.67, 90.56, 12.43],
[ 69.59, 87.34, 23.15],
[ 81.73, 45.76, 67.98],
[ 88.19, 23.45, 90.28]])
>>> tri_spd.shape
SpectralShape(510, 540, 10)
Implements support for tri-spectral power distribution addition.
Parameters: | x (numeric or array_like or TriSpectralPowerDistribution) – Variable to add. |
---|---|
Returns: | Variable added tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
See also
TriSpectralPowerDistribution.__sub__(), TriSpectralPowerDistribution.__mul__(), TriSpectralPowerDistribution.__div__()
Notes
Warning
The addition operation happens in place.
Examples
Adding a single numeric variable:
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd + 10
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 59.67, 100.56, 22.43],
[ 79.59, 97.34, 33.15],
[ 91.73, 55.76, 77.98],
[ 98.19, 33.45, 100.28]])
Adding an array_like variable:
>>> tri_spd + [(1, 2, 3)] * 4
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 60.67, 102.56, 25.43],
[ 80.59, 99.34, 36.15],
[ 92.73, 57.76, 80.98],
[ 99.19, 35.45, 103.28]])
Adding a TriSpectralPowerDistribution class variable:
>>> data1 = {'x_bar': z_bar, 'y_bar': x_bar, 'z_bar': y_bar}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd + tri_spd1
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 73.1 , 152.23, 115.99],
[ 103.74, 168.93, 123.49],
[ 160.71, 139.49, 126.74],
[ 189.47, 123.64, 126.73]])
Returns if the tri-spectral power distribution contains given wavelength \(\lambda\).
Parameters: | wavelength (numeric or array_like) – Wavelength \(\lambda\). |
---|---|
Returns: | Is wavelength \(\lambda\) contained in the tri-spectral power distribution. |
Return type: | bool |
Warning
wavelength argument is tested to be contained in the tri-spectral power distribution within the tolerance defined by colour.constants.common.EPSILON attribute value.
Notes
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> 510 in tri_spd
True
>>> np.array([510, 520]) in tri_spd
True
>>> np.array([510, 520, 521]) in tri_spd
False
Implements support for tri-spectral power distribution division.
Parameters: | x (numeric or array_like or TriSpectralPowerDistribution) – Variable to divide. |
---|---|
Returns: | Variable divided tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
See also
TriSpectralPowerDistribution.__add__(), TriSpectralPowerDistribution.__sub__(), TriSpectralPowerDistribution.__mul__()
Notes
Warning
The division operation happens in place.
Examples
Dividing a single numeric variable:
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd / 10
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 4.967, 9.056, 1.243],
[ 6.959, 8.734, 2.315],
[ 8.173, 4.576, 6.798],
[ 8.819, 2.345, 9.028]])
Dividing an array_like variable:
>>> tri_spd / [(1, 2, 3)] * 4
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 19.868 , 18.112 , 1.6573333...],
[ 27.836 , 17.468 , 3.0866666...],
[ 32.692 , 9.152 , 9.064 ...],
[ 35.276 , 4.69 , 12.0373333...]])
Dividing a TriSpectralPowerDistribution class variable:
>>> data1 = {'x_bar': z_bar, 'y_bar': x_bar, 'z_bar': y_bar}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd / tri_spd1
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 1.5983909..., 0.3646466..., 0.0183009...],
[ 1.2024190..., 0.2510130..., 0.0353408...],
[ 0.4809061..., 0.1119784..., 0.1980769...],
[ 0.3907399..., 0.0531806..., 0.5133191...]])
Returns the tri-spectral power distribution equality with given other tri-spectral power distribution.
Parameters: | spd (TriSpectralPowerDistribution) – Tri-spectral power distribution to compare for equality. |
---|---|
Returns: | Tri-spectral power distribution equality. |
Return type: | bool |
Notes
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data1 = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> data2 = {'x_bar': y_bar, 'y_bar': x_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd2 = TriSpectralPowerDistribution('Tri Spd', data2, mapping)
>>> tri_spd3 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd1 == tri_spd2
False
>>> tri_spd1 == tri_spd3
True
Returns the values for given wavelength \(\lambda\).
Parameters: | wavelength (numeric, array_like or slice) – Wavelength \(\lambda\) to retrieve the values. |
---|---|
Returns: | Wavelength \(\lambda\) values. |
Return type: | ndarray |
See also
Notes
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd[510]
array([ 49.67, 90.56, 12.43])
>>> tri_spd[np.array([510, 520])]
array([[ 49.67, 90.56, 12.43],
[ 69.59, 87.34, 23.15]])
>>> tri_spd[:]
array([[ 49.67, 90.56, 12.43],
[ 69.59, 87.34, 23.15],
[ 81.73, 45.76, 67.98],
[ 88.19, 23.45, 90.28]])
Returns the spectral power distribution hash value. [1]
Returns: | Object hash. |
---|---|
Return type: | int |
Notes
Warning
See SpectralPowerDistribution.__hash__() method warning section.
Returns a generator for the tri-spectral power distribution data.
Returns: | Tri-spectral power distribution data generator. |
---|---|
Return type: | generator |
Notes
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> for wavelength, value in tri_spd:
... print((wavelength, value))
(510, array([ 49.67, 90.56, 12.43]))
(520, array([ 69.59, 87.34, 23.15]))
(530, array([ 81.73, 45.76, 67.98]))
(540, array([ 88.19, 23.45, 90.28]))
Returns the tri-spectral power distribution wavelengths \(\lambda_n\) count.
Returns: | Tri-Spectral power distribution wavelengths \(\lambda_n\) count. |
---|---|
Return type: | int |
Notes
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> len(tri_spd)
4
Implements support for tri-spectral power distribution multiplication.
Parameters: | x (numeric or array_like or TriSpectralPowerDistribution) – Variable to multiply. |
---|---|
Returns: | Variable multiplied tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
See also
TriSpectralPowerDistribution.__add__(), TriSpectralPowerDistribution.__sub__(), TriSpectralPowerDistribution.__div__()
Notes
Warning
The multiplication operation happens in place.
Examples
Multiplying a single numeric variable:
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd * 10
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 496.7, 905.6, 124.3],
[ 695.9, 873.4, 231.5],
[ 817.3, 457.6, 679.8],
[ 881.9, 234.5, 902.8]])
Multiplying an array_like variable:
>>> tri_spd * [(1, 2, 3)] * 4
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 1986.8, 7244.8, 1491.6],
[ 2783.6, 6987.2, 2778. ],
[ 3269.2, 3660.8, 8157.6],
[ 3527.6, 1876. , 10833.6]])
Multiplying a TriSpectralPowerDistribution class variable:
>>> data1 = {'x_bar': z_bar, 'y_bar': x_bar, 'z_bar': y_bar}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd * tri_spd1
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 24695.924, 359849.216, 135079.296],
[ 64440.34 , 486239.248, 242630.52 ],
[ 222240.216, 299197.184, 373291.776],
[ 318471.728, 165444.44 , 254047.92 ]])
Returns the tri-spectral power distribution inequality with given other tri-spectral power distribution.
Parameters: | spd (TriSpectralPowerDistribution) – Tri-spectral power distribution to compare for inequality. |
---|---|
Returns: | Tri-spectral power distribution inequality. |
Return type: | bool |
Notes
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data1 = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> data2 = {'x_bar': y_bar, 'y_bar': x_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd2 = TriSpectralPowerDistribution('Tri Spd', data2, mapping)
>>> tri_spd3 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd1 != tri_spd2
True
>>> tri_spd1 != tri_spd3
False
Implements support for tri-spectral power distribution exponentiation.
Parameters: | x (numeric or array_like or TriSpectralPowerDistribution) – Variable to exponentiate by. |
---|---|
Returns: | TriSpectral power distribution raised by power of x. |
Return type: | TriSpectralPowerDistribution |
See also
TriSpectralPowerDistribution.__add__(), TriSpectralPowerDistribution.__sub__(), TriSpectralPowerDistribution.__mul__(), TriSpectralPowerDistribution.__div__()
Notes
Warning
The power operation happens in place.
Examples
Exponentiation by a single numeric variable:
>>> x_bar = {510: 1.67, 520: 1.59, 530: 1.73, 540: 1.19}
>>> y_bar = {510: 1.56, 520: 1.34, 530: 1.76, 540: 1.45}
>>> z_bar = {510: 1.43, 520: 1.15, 530: 1.98, 540: 1.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd ** 1.1
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 1.7578755..., 1.6309365..., 1.4820731...],
[ 1.6654700..., 1.3797972..., 1.1661854...],
[ 1.8274719..., 1.8623612..., 2.1199797...],
[ 1.2108815..., 1.5048901..., 1.3119913...]])
Exponentiation by an array_like variable:
>>> tri_spd ** ([(1, 2, 3)] * 4)
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 1.7578755..., 2.6599539..., 3.2554342...],
[ 1.6654700..., 1.9038404..., 1.5859988...],
[ 1.8274719..., 3.4683895..., 9.5278547...],
[ 1.2108815..., 2.2646943..., 2.2583585...]])
Exponentiation by a TriSpectralPowerDistribution class variable:
>>> data1 = {'x_bar': z_bar, 'y_bar': x_bar, 'z_bar': y_bar}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd ** tri_spd1
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 2.2404384..., 5.1231818..., 6.3047797...],
[ 1.7979075..., 2.7836369..., 1.8552645...],
[ 3.2996236..., 8.5984706..., 52.8483490...],
[ 1.2775271..., 2.6452177..., 3.2583647...]])
Sets the wavelength \(\lambda\) with given value.
Parameters: |
|
---|
Warning
value parameter is resized to match wavelength parameter size.
Notes
Examples
>>> x_bar = {}
>>> y_bar = {}
>>> z_bar = {}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd[510] = np.array([49.67, 49.67, 49.67])
>>> tri_spd.values
array([[ 49.67, 49.67, 49.67]])
>>> tri_spd[np.array([520, 530])] = np.array([[69.59, 69.59, 69.59],
... [81.73, 81.73, 81.73]])
>>> tri_spd.values
array([[ 49.67, 49.67, 49.67],
[ 69.59, 69.59, 69.59],
[ 81.73, 81.73, 81.73]])
>>> tri_spd[np.array([540, 550])] = 88.19
>>> tri_spd.values
array([[ 49.67, 49.67, 49.67],
[ 69.59, 69.59, 69.59],
[ 81.73, 81.73, 81.73],
[ 88.19, 88.19, 88.19],
[ 88.19, 88.19, 88.19]])
>>> tri_spd[:] = 49.67
>>> tri_spd.values
array([[ 49.67, 49.67, 49.67],
[ 49.67, 49.67, 49.67],
[ 49.67, 49.67, 49.67],
[ 49.67, 49.67, 49.67],
[ 49.67, 49.67, 49.67]])
Implements support for tri-spectral power distribution subtraction.
Parameters: | x (numeric or array_like or TriSpectralPowerDistribution) – Variable to subtract. |
---|---|
Returns: | Variable subtracted tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
See also
TriSpectralPowerDistribution.__add__(), TriSpectralPowerDistribution.__mul__(), TriSpectralPowerDistribution.__div__()
Notes
Warning
The subtraction operation happens in place.
Examples
Subtracting a single numeric variable:
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd - 10
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 39.67, 80.56, 2.43],
[ 59.59, 77.34, 13.15],
[ 71.73, 35.76, 57.98],
[ 78.19, 13.45, 80.28]])
Subtracting an array_like variable:
>>> tri_spd - [(1, 2, 3)] * 4
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 38.67, 78.56, -0.57],
[ 58.59, 75.34, 10.15],
[ 70.73, 33.76, 54.98],
[ 77.19, 11.45, 77.28]])
Subtracting a TriSpectralPowerDistribution class variable:
>>> data1 = {'x_bar': z_bar, 'y_bar': x_bar, 'z_bar': y_bar}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd - tri_spd1
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 26.24, 28.89, -91.13],
[ 35.44, 5.75, -77.19],
[ 2.75, -47.97, 9.22],
[-13.09, -76.74, 53.83]])
Implements support for tri-spectral power distribution division.
Parameters: | x (numeric or array_like or TriSpectralPowerDistribution) – Variable to divide. |
---|---|
Returns: | Variable divided tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
See also
TriSpectralPowerDistribution.__add__(), TriSpectralPowerDistribution.__sub__(), TriSpectralPowerDistribution.__mul__()
Notes
Warning
The division operation happens in place.
Examples
Dividing a single numeric variable:
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd / 10
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 4.967, 9.056, 1.243],
[ 6.959, 8.734, 2.315],
[ 8.173, 4.576, 6.798],
[ 8.819, 2.345, 9.028]])
Dividing an array_like variable:
>>> tri_spd / [(1, 2, 3)] * 4
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 19.868 , 18.112 , 1.6573333...],
[ 27.836 , 17.468 , 3.0866666...],
[ 32.692 , 9.152 , 9.064 ...],
[ 35.276 , 4.69 , 12.0373333...]])
Dividing a TriSpectralPowerDistribution class variable:
>>> data1 = {'x_bar': z_bar, 'y_bar': x_bar, 'z_bar': y_bar}
>>> tri_spd1 = TriSpectralPowerDistribution('Tri Spd', data1, mapping)
>>> tri_spd / tri_spd1
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 1.5983909..., 0.3646466..., 0.0183009...],
[ 1.2024190..., 0.2510130..., 0.0353408...],
[ 0.4809061..., 0.1119784..., 0.1980769...],
[ 0.3907399..., 0.0531806..., 0.5133191...]])
Aligns the tri-spectral power distribution to given shape: Interpolates first then extrapolates to fit the given range.
Parameters: |
|
---|---|
Returns: | Aligned tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
Examples
>>> x_bar = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 89.76,
... 560: 90.28}
>>> y_bar = {
... 510: 90.56,
... 520: 87.34,
... 530: 45.76,
... 540: 23.45,
... 550: 15.34,
... 560: 10.11}
>>> z_bar = {
... 510: 12.43,
... 520: 23.15,
... 530: 67.98,
... 540: 90.28,
... 550: 91.61,
... 560: 98.24}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.align(SpectralShape(505, 565, 1))
<...TriSpectralPowerDistribution object at 0x...>
>>> # Doctests skip for Python 2.x compatibility.
>>> tri_spd.wavelengths
array([505, 506, 507, 508, 509, 510, 511, 512, 513, 514, 515, 516, 517,
518, 519, 520, 521, 522, 523, 524, 525, 526, 527, 528, 529, 530,
531, 532, 533, 534, 535, 536, 537, 538, 539, 540, 541, 542, 543,
544, 545, 546, 547, 548, 549, 550, 551, 552, 553, 554, 555, 556,
557, 558, 559, 560, 561, 562, 563, 564, 565])
>>> tri_spd.values
array([[ 49.67 ..., 90.56 ..., 12.43 ...],
[ 49.67 ..., 90.56 ..., 12.43 ...],
[ 49.67 ..., 90.56 ..., 12.43 ...],
[ 49.67 ..., 90.56 ..., 12.43 ...],
[ 49.67 ..., 90.56 ..., 12.43 ...],
[ 49.67 ..., 90.56 ..., 12.43 ...],
[ 51.8325938..., 91.2994928..., 12.5377184...],
[ 53.9841952..., 91.9502387..., 12.7233193...],
[ 56.1205452..., 92.5395463..., 12.9651679...],
[ 58.2315395..., 93.0150037..., 13.3123777...],
[ 60.3033208..., 93.2716331..., 13.8605136...],
[ 62.3203719..., 93.1790455..., 14.7272944...],
[ 64.2676077..., 92.6085951..., 16.0282961...],
[ 66.1324679..., 91.4605335..., 17.8526544...],
[ 67.9070097..., 89.6911649..., 20.2387677...],
[ 69.59 ..., 87.34 ..., 23.15 ...],
[ 71.1837378..., 84.4868033..., 26.5150469...],
[ 72.6800056..., 81.0666018..., 30.3964852...],
[ 74.0753483..., 77.0766254..., 34.7958422...],
[ 75.3740343..., 72.6153870..., 39.6178858...],
[ 76.5856008..., 67.8490714..., 44.7026805...],
[ 77.7223995..., 62.9779261..., 49.8576432...],
[ 78.7971418..., 58.2026503..., 54.8895997...],
[ 79.8204447..., 53.6907852..., 59.6368406...],
[ 80.798376 ..., 49.5431036..., 64.0011777...],
[ 81.73 ..., 45.76 ..., 67.98 ...],
[ 82.6093606..., 42.2678534..., 71.6460893...],
[ 83.439232 ..., 39.10608 ..., 74.976976 ...],
[ 84.2220071..., 36.3063728..., 77.9450589...],
[ 84.956896 ..., 33.85464 ..., 80.552 ...],
[ 85.6410156..., 31.7051171..., 82.8203515...],
[ 86.27048 ..., 29.79448 ..., 84.785184 ...],
[ 86.8414901..., 28.0559565..., 86.4857131...],
[ 87.351424 ..., 26.43344 ..., 87.956928 ...],
[ 87.7999266..., 24.8956009..., 89.2212178...],
[ 88.19 ..., 23.45 ..., 90.28 ...],
[ 88.5265036..., 22.1424091..., 91.1039133...],
[ 88.8090803..., 20.9945234..., 91.6538035...],
[ 89.0393279..., 20.0021787..., 91.9333499...],
[ 89.2222817..., 19.1473370..., 91.9858818...],
[ 89.3652954..., 18.4028179..., 91.8811002...],
[ 89.4769231..., 17.7370306..., 91.7018000...],
[ 89.5657996..., 17.1187058..., 91.5305910...],
[ 89.6395227..., 16.5216272..., 91.4366204...],
[ 89.7035339..., 15.9293635..., 91.4622944...],
[ 89.76 ..., 15.34 ..., 91.61 ...],
[ 89.8094041..., 14.7659177..., 91.8528616...],
[ 89.8578890..., 14.2129190..., 92.2091737...],
[ 89.9096307..., 13.6795969..., 92.6929664...],
[ 89.9652970..., 13.1613510..., 93.2988377...],
[ 90.0232498..., 12.6519811..., 94.0078786...],
[ 90.0807467..., 12.1452800..., 94.7935995...],
[ 90.1351435..., 11.6366269..., 95.6278555...],
[ 90.1850956..., 11.1245805..., 96.4867724...],
[ 90.2317606..., 10.6124724..., 97.3566724...],
[ 90.28 ..., 10.11 ..., 98.24 ...],
[ 90.28 ..., 10.11 ..., 98.24 ...],
[ 90.28 ..., 10.11 ..., 98.24 ...],
[ 90.28 ..., 10.11 ..., 98.24 ...],
[ 90.28 ..., 10.11 ..., 98.24 ...],
[ 90.28 ..., 10.11 ..., 98.24 ...]])
Clones the tri-spectral power distribution.
Most of the TriSpectralPowerDistribution class operations are conducted in-place. The TriSpectralPowerDistribution.clone() method provides a convenient way to copy the tri-spectral power distribution to a new object.
Returns: | Cloned tri-spectral power distribution. |
---|---|
Return type: | TriSpectralPowerDistribution |
Examples
>>> x_bar = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 89.76,
... 560: 90.28}
>>> y_bar = {
... 510: 90.56,
... 520: 87.34,
... 530: 45.76,
... 540: 23.45,
... 550: 15.34,
... 560: 10.11}
>>> z_bar = {
... 510: 12.43,
... 520: 23.15,
... 530: 67.98,
... 540: 90.28,
... 550: 91.61,
... 560: 98.24}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> print(tri_spd)
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd_clone = tri_spd.clone()
>>> print(tri_spd_clone)
<...TriSpectralPowerDistribution object at 0x...>
Property for self.__data private attribute.
Returns: | self.__data. |
---|---|
Return type: | dict |
Extrapolates the tri-spectral power distribution following CIE 15:2004 recommendation. [2] [3]
Parameters: |
|
---|---|
Returns: | Extrapolated tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
See also
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.extrapolate(SpectralShape(400, 700)).shape
SpectralShape(400, 700, 10)
>>> tri_spd[400]
array([ 49.67, 90.56, 12.43])
>>> tri_spd[700]
array([ 88.19, 23.45, 90.28])
Returns the values for given wavelength \(\lambda\).
Parameters: |
|
---|---|
Returns: | Wavelength \(\lambda\) values. |
Return type: | numeric or array_like |
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.get(510)
array([ 49.67, 90.56, 12.43])
>>> tri_spd.get(np.array([510, 520]))
array([[ 49.67, 90.56, 12.43],
[ 69.59, 87.34, 23.15]])
>>> tri_spd.get(511)
array([ nan, nan, nan])
>>> tri_spd.get(np.array([510, 520]))
array([[ 49.67, 90.56, 12.43],
[ 69.59, 87.34, 23.15]])
Interpolates the tri-spectral power distribution following CIE 167:2005 recommendations: the method developed by Sprague (1880) should be used for interpolating functions having a uniformly spaced independent variable and a Cubic Spline method for non-uniformly spaced independent variable. [4]
Parameters: |
|
---|---|
Returns: | Interpolated tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
See also
Notes
Warning
See SpectralPowerDistribution.interpolate() method warning section.
Examples
Uniform data is using Sprague (1880) interpolation by default:
>>> x_bar = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 89.76,
... 560: 90.28}
>>> y_bar = {
... 510: 90.56,
... 520: 87.34,
... 530: 45.76,
... 540: 23.45,
... 550: 15.34,
... 560: 10.11}
>>> z_bar = {
... 510: 12.43,
... 520: 23.15,
... 530: 67.98,
... 540: 90.28,
... 550: 91.61,
... 560: 98.24}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.interpolate(SpectralShape(steps=1))
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd[515]
array([ 60.30332087, 93.27163315, 13.86051361])
Non uniform data is using Cubic Spline interpolation by default:
>>> x_bar = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 89.76,
... 560: 90.28}
>>> y_bar = {
... 510: 90.56,
... 520: 87.34,
... 530: 45.76,
... 540: 23.45,
... 550: 15.34,
... 560: 10.11}
>>> z_bar = {
... 510: 12.43,
... 520: 23.15,
... 530: 67.98,
... 540: 90.28,
... 550: 91.61,
... 560: 98.24}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd[511] = np.array([31.41, 95.27, 15.06])
>>> tri_spd.interpolate(SpectralShape(steps=1))
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd[515]
array([ 21.47104053, 100.64300155, 18.8165196 ])
Enforcing Linear interpolation:
>>> x_bar = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 89.76,
... 560: 90.28}
>>> y_bar = {
... 510: 90.56,
... 520: 87.34,
... 530: 45.76,
... 540: 23.45,
... 550: 15.34,
... 560: 10.11}
>>> z_bar = {
... 510: 12.43,
... 520: 23.15,
... 530: 67.98,
... 540: 90.28,
... 550: 91.61,
... 560: 98.24}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.interpolate(SpectralShape(steps=1), method='Linear')
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd[515]
array([ 59.63, 88.95, 17.79])
Returns if the tri-spectral power distribution has uniformly spaced data.
Returns: | Is uniform. |
---|---|
Return type: | bool |
See also
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.is_uniform()
True
Breaking the steps by introducing new wavelength \(\lambda\) values:
>>> tri_spd[511] = np.array([49.6700, 49.6700, 49.6700])
>>> tri_spd.is_uniform()
False
Property for self.items attribute. This is a convenient attribute used to iterate over the tri-spectral power distribution.
Returns: | Tri-spectral power distribution data generator. |
---|---|
Return type: | generator |
Property for self.__labels private attribute.
Returns: | self.__labels. |
---|---|
Return type: | dict |
Property for self.__mapping private attribute.
Returns: | self.__mapping. |
---|---|
Return type: | dict |
Property for self.__name private attribute.
Returns: | self.__name. |
---|---|
Return type: | unicode |
Normalises the tri-spectral power distribution with given normalization factor.
Parameters: | factor (numeric, optional) – Normalization factor |
---|---|
Returns: | Normalised tri- spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
Notes
Examples
>>> x_bar = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 89.76,
... 560: 90.28}
>>> y_bar = {
... 510: 90.56,
... 520: 87.34,
... 530: 45.76,
... 540: 23.45,
... 550: 15.34,
... 560: 10.11}
>>> z_bar = {
... 510: 12.43,
... 520: 23.15,
... 530: 67.98,
... 540: 90.28,
... 550: 91.61,
... 560: 98.24}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.normalise()
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 0.5055985..., 0.9218241..., 0.1265268...],
[ 0.7083672..., 0.8890472..., 0.2356473...],
[ 0.8319421..., 0.4657980..., 0.6919788...],
[ 0.8976995..., 0.2387011..., 0.9189739...],
[ 0.9136807..., 0.1561482..., 0.9325122...],
[ 0.9189739..., 0.1029112..., 1. ...]])
Property for self.shape attribute.
Returns the shape of the tri-spectral power distribution in the form of a SpectralShape class instance.
Returns: | Tri-spectral power distribution shape. |
---|---|
Return type: | SpectralShape |
Warning
TriSpectralPowerDistribution.shape is read only.
Examples
>>> x_bar = {510: 49.67, 520: 69.59, 530: 81.73, 540: 88.19}
>>> y_bar = {510: 90.56, 520: 87.34, 530: 45.76, 540: 23.45}
>>> z_bar = {510: 12.43, 520: 23.15, 530: 67.98, 540: 90.28}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.shape
SpectralShape(510, 540, 10)
Property for self.__title private attribute.
Returns: | self.__title. |
---|---|
Return type: | unicode |
Property for self.values attribute.
Returns: | Tri-spectral power distribution wavelengths \(\lambda_n\) values. |
---|---|
Return type: | ndarray |
Warning
TriSpectralPowerDistribution.values is read only.
Property for self.wavelengths attribute.
Returns: | Tri-spectral power distribution wavelengths \(\lambda_n\). |
---|---|
Return type: | ndarray |
Warning
TriSpectralPowerDistribution.wavelengths is read only.
Property for self.x attribute.
Returns: | Spectral power distribution for x axis. |
---|---|
Return type: | SpectralPowerDistribution |
Warning
TriSpectralPowerDistribution.x is read only.
Property for self.y attribute.
Returns: | Spectral power distribution for y axis. |
---|---|
Return type: | SpectralPowerDistribution |
Warning
TriSpectralPowerDistribution.y is read only.
Property for self.z attribute.
Returns: | Spectral power distribution for z axis. |
---|---|
Return type: | SpectralPowerDistribution |
Warning
TriSpectralPowerDistribution.z is read only.
Zeros fills the tri-spectral power distribution: Missing values will be replaced with zeros to fit the defined range.
Parameters: | shape (SpectralShape, optional) – Spectral shape used for zeros fill. |
---|---|
Returns: | Zeros filled tri-spectral power distribution. |
Return type: | TriSpectralPowerDistribution |
Examples
>>> x_bar = {
... 510: 49.67,
... 520: 69.59,
... 530: 81.73,
... 540: 88.19,
... 550: 89.76,
... 560: 90.28}
>>> y_bar = {
... 510: 90.56,
... 520: 87.34,
... 530: 45.76,
... 540: 23.45,
... 550: 15.34,
... 560: 10.11}
>>> z_bar = {
... 510: 12.43,
... 520: 23.15,
... 530: 67.98,
... 540: 90.28,
... 550: 91.61,
... 560: 98.24}
>>> data = {'x_bar': x_bar, 'y_bar': y_bar, 'z_bar': z_bar}
>>> mapping = {'x': 'x_bar', 'y': 'y_bar', 'z': 'z_bar'}
>>> tri_spd = TriSpectralPowerDistribution('Tri Spd', data, mapping)
>>> tri_spd.zeros(SpectralShape(505, 565, 1))
<...TriSpectralPowerDistribution object at 0x...>
>>> tri_spd.values
array([[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 49.67, 90.56, 12.43],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 69.59, 87.34, 23.15],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 81.73, 45.76, 67.98],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 88.19, 23.45, 90.28],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 89.76, 15.34, 91.61],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 90.28, 10.11, 98.24],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ],
[ 0. , 0. , 0. ]])
Default spectral shape using the shape of CIE 1931 2 Degree Standard Observer.
DEFAULT_SPECTRAL_SHAPE : SpectralShape
Returns a spectral power distribution of given spectral shape filled with constant \(k\) values.
Parameters: |
|
---|---|
Returns: | Constant \(k\) to filled spectral power distribution. |
Return type: | SpectralPowerDistribution |
Notes
Examples
>>> spd = constant_spd(100)
>>> spd.shape
SpectralShape(360.0, 830.0, 1.0)
>>> spd[400]
array(100.0)
Returns a spectral power distribution of given spectral shape filled with zeros.
Parameters: | shape (SpectralShape, optional) – Spectral shape used to create the spectral power distribution. |
---|---|
Returns: | Zeros filled spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
Notes
Examples
>>> spd = zeros_spd()
>>> spd.shape
SpectralShape(360.0, 830.0, 1.0)
>>> spd[400]
array(0.0)
Returns a spectral power distribution of given spectral shape filled with ones.
Parameters: | shape (SpectralShape, optional) – Spectral shape used to create the spectral power distribution. |
---|---|
Returns: | Ones filled spectral power distribution. |
Return type: | SpectralPowerDistribution |
See also
Notes
Examples
>>> spd = ones_spd()
>>> spd.shape
SpectralShape(360.0, 830.0, 1.0)
>>> spd[400]
array(1.0)