#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Interpolation
=============
Defines classes for interpolating variables.
- :class:`LinearInterpolator`: 1-D function linear interpolation.
- :class:`SpragueInterpolator`: 1-D function fifth-order polynomial
interpolation.
- :class:`CubicSplineInterpolator`: 1-D function cubic spline interpolation.
- :class:`PchipInterpolator`: 1-D function piecewise cube Hermite
interpolation.
"""
from __future__ import division, unicode_literals
import bisect
import numpy as np
from colour.utilities import (
as_numeric,
is_scipy_installed,
is_uniform,
steps,
warning)
__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013 - 2015 - Colour Developers'
__license__ = 'New BSD License - http://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = 'colour-science@googlegroups.com'
__status__ = 'Production'
__all__ = ['LinearInterpolator',
'SpragueInterpolator',
'CubicSplineInterpolator',
'PchipInterpolator']
[docs]class LinearInterpolator(object):
"""
Linearly interpolates a 1-D function.
Parameters
----------
x : ndarray
Independent :math:`x` variable values corresponding with :math:`y`
variable.
y : ndarray
Dependent and already known :math:`y` variable values to
interpolate.
Methods
-------
__call__
Notes
-----
This class is a wrapper around *numpy.interp* definition.
See Also
--------
SpragueInterpolator
Examples
--------
Interpolating a single numeric variable:
>>> y = np.array([5.9200,
... 9.3700,
... 10.8135,
... 4.5100,
... 69.5900,
... 27.8007,
... 86.0500])
>>> x = np.arange(len(y))
>>> f = LinearInterpolator(x, y)
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> f(0.5) # doctest: +ELLIPSIS
7.64...
Interpolating an *array_like* variable:
>>> f([0.25, 0.75])
array([ 6.7825, 8.5075])
"""
def __init__(self, x=None, y=None):
self.__x = None
self.x = x
self.__y = None
self.y = y
self.__validate_dimensions()
@property
def x(self):
"""
Property for **self.__x** private attribute.
Returns
-------
array_like
self.__x
"""
return self.__x
@x.setter
[docs] def x(self, value):
"""
Setter for **self.__x** private attribute.
Parameters
----------
value : array_like
Attribute value.
"""
if value is not None:
value = np.atleast_1d(value).astype(np.float_)
assert value.ndim == 1, (
'"x" independent variable must have exactly one dimension!')
self.__x = value
@property
def y(self):
"""
Property for **self.__y** private attribute.
Returns
-------
array_like
self.__y
"""
return self.__y
@y.setter
[docs] def y(self, value):
"""
Setter for **self.__y** private attribute.
Parameters
----------
value : array_like
Attribute value.
"""
if value is not None:
value = np.atleast_1d(value).astype(np.float_)
assert value.ndim == 1, (
'"y" dependent variable must have exactly one dimension!')
self.__y = value
[docs] def __call__(self, x):
"""
Evaluates the interpolating polynomial at given point(s).
Parameters
----------
x : numeric or array_like
Point(s) to evaluate the interpolant at.
Returns
-------
float or ndarray
Interpolated value(s).
"""
x = np.atleast_1d(x).astype(np.float_)
xi = as_numeric(self.__evaluate(x))
return xi
def __evaluate(self, x):
"""
Performs the interpolating polynomial evaluation at given points.
Parameters
----------
x : ndarray
Points to evaluate the interpolant at.
Returns
-------
ndarray
Interpolated points values.
"""
self.__validate_dimensions()
self.__validate_interpolation_range(x)
return np.interp(x, self.__x, self.__y)
def __validate_dimensions(self):
"""
Validates variables dimensions to be the same.
"""
if len(self.__x) != len(self.__y):
raise ValueError(
('"x" independent and "y" dependent variables have different '
'dimensions: "{0}", "{1}"').format(len(self.__x),
len(self.__y)))
def __validate_interpolation_range(self, x):
"""
Validates given point to be in interpolation range.
"""
below_interpolation_range = x < self.__x[0]
above_interpolation_range = x > self.__x[-1]
if below_interpolation_range.any():
raise ValueError('"{0}" is below interpolation range.'.format(x))
if above_interpolation_range.any():
raise ValueError('"{0}" is above interpolation range.'.format(x))
[docs]class SpragueInterpolator(object):
"""
Constructs a fifth-order polynomial that passes through :math:`y` dependent
variable.
Sprague (1880) method is recommended by the *CIE* for interpolating
functions having a uniformly spaced independent variable.
Parameters
----------
x : array_like
Independent :math:`x` variable values corresponding with :math:`y`
variable.
y : array_like
Dependent and already known :math:`y` variable values to
interpolate.
Methods
-------
__call__
See Also
--------
LinearInterpolator
Notes
-----
The minimum number :math:`k` of data points required along the
interpolation axis is :math:`k=6`.
References
----------
.. [1] CIE TC 1-38. (2005). 9.2.4 Method of interpolation for uniformly
spaced independent variable. In CIE 167:2005 Recommended Practice
for Tabulating Spectral Data for Use in Colour Computations
(pp. 1–27). ISBN:978-3-901-90641-1
.. [2] Westland, S., Ripamonti, C., & Cheung, V. (2012). Interpolation
Methods. In Computational Colour Science Using MATLAB
(2nd ed., pp. 29–37). ISBN:978-0-470-66569-5
Examples
--------
Interpolating a single numeric variable:
>>> y = np.array([5.9200,
... 9.3700,
... 10.8135,
... 4.5100,
... 69.5900,
... 27.8007,
... 86.0500])
>>> x = np.arange(len(y))
>>> f = SpragueInterpolator(x, y)
>>> f(0.5) # doctest: +ELLIPSIS
7.2185025...
Interpolating an *array_like* variable:
>>> f([0.25, 0.75]) # doctest: +ELLIPSIS
array([ 6.7295161..., 7.8140625...])
"""
SPRAGUE_C_COEFFICIENTS = np.array(
[[884, -1960, 3033, -2648, 1080, -180],
[508, -540, 488, -367, 144, -24],
[-24, 144, -367, 488, -540, 508],
[-180, 1080, -2648, 3033, -1960, 884]])
"""
Defines the coefficients used to generate extra points for boundaries
interpolation.
SPRAGUE_C_COEFFICIENTS : array_like, (4, 6)
References
----------
.. [3] CIE TC 1-38. (2005). Table V. Values of the c-coefficients of
Equ.s 6 and 7. In CIE 167:2005 Recommended Practice for Tabulating
Spectral Data for Use in Colour Computations (p. 19).
ISBN:978-3-901-90641-1
"""
def __init__(self, x=None, y=None):
self.__xp = None
self.__yp = None
self.__x = None
self.x = x
self.__y = None
self.y = y
self.__validate_dimensions()
@property
def x(self):
"""
Property for **self.__x** private attribute.
Returns
-------
array_like
self.__x
"""
return self.__x
@x.setter
[docs] def x(self, value):
"""
Setter for **self.__x** private attribute.
Parameters
----------
value : array_like
Attribute value.
"""
if value is not None:
value = np.atleast_1d(value).astype(np.float_)
assert value.ndim == 1, (
'"x" independent variable must have exactly one dimension!')
assert is_uniform(value), (
'"x" independent variable is not uniform!')
value_steps = steps(value)[0]
xp1 = value[0] - value_steps * 2
xp2 = value[0] - value_steps
xp3 = value[-1] + value_steps
xp4 = value[-1] + value_steps * 2
self.__xp = np.concatenate(((xp1, xp2), value, (xp3, xp4)))
self.__x = value
@property
def y(self):
"""
Property for **self.__y** private attribute.
Returns
-------
array_like
self.__y
"""
return self.__y
@y.setter
[docs] def y(self, value):
"""
Setter for **self.__y** private attribute.
Parameters
----------
value : array_like
Attribute value.
"""
if value is not None:
value = np.atleast_1d(value).astype(np.float_)
assert value.ndim == 1, (
'"y" dependent variable must have exactly one dimension!')
assert len(value) >= 6, (
'"y" dependent variable values count must be in domain [6:]!')
yp1 = np.ravel((np.dot(
self.SPRAGUE_C_COEFFICIENTS[0],
np.array(value[0:6]).reshape((6, 1)))) / 209)[0]
yp2 = np.ravel((np.dot(
self.SPRAGUE_C_COEFFICIENTS[1],
np.array(value[0:6]).reshape((6, 1)))) / 209)[0]
yp3 = np.ravel((np.dot(
self.SPRAGUE_C_COEFFICIENTS[2],
np.array(value[-6:]).reshape((6, 1)))) / 209)[0]
yp4 = np.ravel((np.dot(
self.SPRAGUE_C_COEFFICIENTS[3],
np.array(value[-6:]).reshape((6, 1)))) / 209)[0]
self.__yp = np.concatenate(((yp1, yp2), value, (yp3, yp4)))
self.__y = value
[docs] def __call__(self, x):
"""
Evaluates the interpolating polynomial at given point(s).
Parameters
----------
x : numeric or array_like
Point(s) to evaluate the interpolant at.
Returns
-------
numeric or ndarray
Interpolated value(s).
"""
try:
return np.array([self.__evaluate(element) for element in x])
except TypeError:
return self.__evaluate(x)
def __evaluate(self, x):
"""
Performs the interpolating polynomial evaluation at given point.
Parameters
----------
x : numeric
Point to evaluate the interpolant at.
Returns
-------
float
Interpolated point values.
"""
self.__validate_dimensions()
self.__validate_interpolation_range(x)
if x in self.__x:
return self.__y[np.where(self.__x == x)][0]
i = bisect.bisect(self.__xp, x) - 1
X = (x - self.__xp[i]) / (self.__xp[i + 1] - self.__xp[i])
r = self.__yp
a0p = r[i]
a1p = ((2 * r[i - 2] - 16 * r[i - 1] + 16 * r[i + 1] - 2 *
r[i + 2]) / 24)
a2p = ((-r[i - 2] + 16 * r[i - 1] - 30 * r[i] + 16 * r[i + 1] -
r[i + 2]) / 24)
a3p = ((-9 * r[i - 2] + 39 * r[i - 1] - 70 * r[i] + 66 *
r[i + 1] - 33 * r[i + 2] + 7 * r[i + 3]) / 24)
a4p = ((13 * r[i - 2] - 64 * r[i - 1] + 126 * r[i] - 124 *
r[i + 1] + 61 * r[i + 2] - 12 * r[i + 3]) / 24)
a5p = ((-5 * r[i - 2] + 25 * r[i - 1] - 50 * r[i] + 50 *
r[i + 1] - 25 * r[i + 2] + 5 * r[i + 3]) / 24)
y = (a0p + a1p * X + a2p * X ** 2 + a3p * X ** 3 + a4p * X ** 4 +
a5p * X ** 5)
return y
def __validate_dimensions(self):
"""
Validates variables dimensions to be the same.
"""
if len(self.__x) != len(self.__y):
raise ValueError(
('"x" independent and "y" dependent variables have different '
'dimensions: "{0}", "{1}"').format(len(self.__x),
len(self.__y)))
def __validate_interpolation_range(self, x):
"""
Validates given point to be in interpolation range.
"""
below_interpolation_range = x < self.__x[0]
above_interpolation_range = x > self.__x[-1]
if below_interpolation_range.any():
raise ValueError('"{0}" is below interpolation range.'.format(x))
if above_interpolation_range.any():
raise ValueError('"{0}" is above interpolation range.'.format(x))
if is_scipy_installed():
from scipy.interpolate import PchipInterpolator, interp1d
[docs] class CubicSplineInterpolator(interp1d):
"""
Interpolates a 1-D function using cubic spline interpolation.
Notes
-----
This class is a wrapper around *scipy.interpolate.interp1d* class.
"""
def __init__(self, *args, **kwargs):
# TODO: Implements proper wrapper to ensure return values
# consistency and avoid having to cast to numeric in
# :meth:`SpectralPowerDistribution.interpolate` method.
super(CubicSplineInterpolator, self).__init__(
kind='cubic', *args, **kwargs)
else:
warning(('"scipy.interpolate.PchipInterpolator" and '
'"scipy.interpolate.interp1d" interpolators are not available, '
'using "LinearInterpolator" instead!'))
PchipInterpolator = CubicSplineInterpolator = LinearInterpolator