Transforms given Cartesian coordinates vector to Spherical coordinates.
Parameters: | vector (array_like) – Cartesian coordinates vector (x, y, z) to transform. |
---|---|
Returns: | Spherical coordinates vector (r, theta, phi). |
Return type: | ndarray |
Examples
>>> vector = np.array([3, 1, 6])
>>> cartesian_to_spherical(vector)
array([ 6.7823299..., 1.0857465..., 0.3217505...])
Transforms given Spherical coordinates vector to Cartesian coordinates.
Parameters: | vector (array_like) – Spherical coordinates vector (r, theta, phi) to transform. |
---|---|
Returns: | Cartesian coordinates vector (x, y, z). |
Return type: | ndarray |
Examples
>>> vector = np.array([6.78232998, 1.08574654, 0.32175055])
>>> spherical_to_cartesian(vector)
array([ 3. , 0.9999999..., 6. ])
Transforms given Cartesian coordinates vector to Cylindrical coordinates.
Parameters: | vector (array_like) – Cartesian coordinates vector (x, y, z) to transform. |
---|---|
Returns: | Cylindrical coordinates vector (z, theta, rho). |
Return type: | ndarray |
Examples
>>> vector = np.array([3, 1, 6])
>>> cartesian_to_cylindrical(vector)
array([ 6. , 0.3217505..., 3.1622776...])
Transforms given Cylindrical coordinates vector to Cartesian coordinates.
Parameters: | vector (array_like) – Cylindrical coordinates vector (z, theta, rho) to transform. |
---|---|
Returns: | Cartesian coordinates vector (x, y, z). |
Return type: | ndarray |
Examples
>>> vector = np.array([6.00000000, 0.32175055, 3.16227766])
>>> cylindrical_to_cartesian(vector)
array([ 3. , 0.9999999..., 6. ])
Bases: object
Extrapolates the 1-D function of given interpolator.
The Extrapolator1d acts as a wrapper around a given Colour or scipy interpolator class instance with compatible signature. Two extrapolation methods are available:
Specifying the left and right arguments takes precedence on the chosen extrapolation method and will assign the respective left and right values to the given points.
Parameters: |
|
---|
Notes
The interpolator must define x and y attributes.
References
[1] | sastanin. (n.d.). How to make scipy.interpolate give an extrapolated result beyond the input range? Retrieved August 08, 2014, from http://stackoverflow.com/a/2745496/931625 |
Examples
Extrapolating a single numeric variable:
>>> from colour.algebra import LinearInterpolator
>>> x = np.array([3, 4, 5])
>>> y = np.array([1, 2, 3])
>>> interpolator = LinearInterpolator(x, y)
>>> extrapolator = Extrapolator1d(interpolator)
>>> extrapolator(1)
-1.0
Extrapolating an array_like variable:
>>> extrapolator(np.array([6, 7 , 8]))
array([ 4., 5., 6.])
Using the Constant extrapolation method:
>>> x = np.array([3, 4, 5])
>>> y = np.array([1, 2, 3])
>>> interpolator = LinearInterpolator(x, y)
>>> extrapolator = Extrapolator1d(interpolator, method='Constant')
>>> extrapolator(np.array([0.1, 0.2, 8, 9]))
array([ 1., 1., 3., 3.])
Using defined left boundary and Constant extrapolation method:
>>> x = np.array([3, 4, 5])
>>> y = np.array([1, 2, 3])
>>> interpolator = LinearInterpolator(x, y)
>>> extrapolator = Extrapolator1d(interpolator, method='Constant', left=0)
>>> extrapolator(np.array([0.1, 0.2, 8, 9]))
array([ 0., 0., 3., 3.])
Evaluates the Extrapolator1d at given point(s).
Parameters: | x (numeric or array_like) – Point(s) to evaluate the Extrapolator1d at. |
---|---|
Returns: | Extrapolated points value(s). |
Return type: | float or ndarray |
Property for self.__interpolator private attribute.
Returns: | self.__interpolator |
---|---|
Return type: | object |
Property for self.__left private attribute.
Returns: | self.__left |
---|---|
Return type: | numeric |
Property for self.__method private attribute.
Returns: | self.__method |
---|---|
Return type: | unicode |
Property for self.__right private attribute.
Returns: | self.__right |
---|---|
Return type: | numeric |
Bases: object
Linearly interpolates a 1-D function.
Parameters: |
|
---|
Notes
This class is a wrapper around numpy.interp definition.
See also
Examples
Interpolating a single numeric variable:
>>> y = np.array([5.9200,
... 9.3700,
... 10.8135,
... 4.5100,
... 69.5900,
... 27.8007,
... 86.0500])
>>> x = np.arange(len(y))
>>> f = LinearInterpolator(x, y)
>>> # Doctests ellipsis for Python 2.x compatibility.
>>> f(0.5)
7.64...
Interpolating an array_like variable:
>>> f([0.25, 0.75])
array([ 6.7825, 8.5075])
Evaluates the interpolating polynomial at given point(s).
Parameters: | x (numeric or array_like) – Point(s) to evaluate the interpolant at. |
---|---|
Returns: | Interpolated value(s). |
Return type: | float or ndarray |
Property for self.__x private attribute.
Returns: | self.__x |
---|---|
Return type: | array_like |
Property for self.__y private attribute.
Returns: | self.__y |
---|---|
Return type: | array_like |
Bases: object
Constructs a fifth-order polynomial that passes through \(y\) dependent variable.
Sprague (1880) method is recommended by the CIE for interpolating functions having a uniformly spaced independent variable.
Parameters: |
|
---|
See also
Notes
The minimum number \(k\) of data points required along the interpolation axis is \(k=6\).
References
[1] | CIE TC 1-38. (2005). 9.2.4 Method of interpolation for uniformly spaced independent variable. In CIE 167:2005 Recommended Practice for Tabulating Spectral Data for Use in Colour Computations (pp. 1–27). ISBN:978-3-901-90641-1 |
[2] | Westland, S., Ripamonti, C., & Cheung, V. (2012). Interpolation Methods. In Computational Colour Science Using MATLAB (2nd ed., pp. 29–37). ISBN:978-0-470-66569-5 |
Examples
Interpolating a single numeric variable:
>>> y = np.array([5.9200,
... 9.3700,
... 10.8135,
... 4.5100,
... 69.5900,
... 27.8007,
... 86.0500])
>>> x = np.arange(len(y))
>>> f = SpragueInterpolator(x, y)
>>> f(0.5)
7.2185025...
Interpolating an array_like variable:
>>> f([0.25, 0.75])
array([ 6.7295161..., 7.8140625...])
Evaluates the interpolating polynomial at given point(s).
Parameters: | x (numeric or array_like) – Point(s) to evaluate the interpolant at. |
---|---|
Returns: | Interpolated value(s). |
Return type: | numeric or ndarray |
Property for self.__x private attribute.
Returns: | self.__x |
---|---|
Return type: | array_like |
Property for self.__y private attribute.
Returns: | self.__y |
---|---|
Return type: | array_like |
Bases: scipy.interpolate.interpolate.interp1d
Interpolates a 1-D function using cubic spline interpolation.
Notes
This class is a wrapper around scipy.interpolate.interp1d class.
Bases: object
PCHIP 1-d monotonic cubic interpolation
x and y are arrays of values used to approximate some function f, with y = f(x). The interpolant uses monotonic cubic splines to find the value of new points. (PCHIP stands for Piecewise Cubic Hermite Interpolating Polynomial).
Parameters: |
|
---|
Notes
The first derivatives are guaranteed to be continuous, but the second derivatives may jump at x_k.
Preserves monotonicity in the interpolation data and does not overshoot if the data is not smooth.
Determines the derivatives at the points x_k, d_k, by using PCHIP algorithm:
Let m_k be the slope of the kth segment (between k and k+1) If m_k=0 or m_{k-1}=0 or sgn(m_k) != sgn(m_{k-1}) then d_k == 0 else use weighted harmonic mean:
w_1 = 2h_k + h_{k-1}, w_2 = h_k + 2h_{k-1} 1/d_k = 1/(w_1 + w_2)*(w_1 / m_k + w_2 / m_{k-1})
where h_k is the spacing between x_k and x_{k+1}.
Evaluate the PCHIP interpolant or its derivative.
Parameters: |
|
---|---|
Returns: | y – Interpolated values. Shape is determined by replacing the interpolation axis in the original array with the shape of x. |
Return type: | array-like |
Construct a piecewise polynomial representing the derivative.
Parameters: | der (int, optional) – Order of derivative to evaluate. (Default: 1) If negative, the antiderivative is returned. |
---|---|
Returns: |
|
Return the roots of the interpolated function.
Returns if given array_like variable \(x\) is an identity matrix.
Parameters: |
|
---|---|
Returns: | Is identity matrix. |
Return type: | bool |
Examples
>>> is_identity(np.array([1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape(3, 3))
True
>>> is_identity(np.array([1, 2, 0, 0, 1, 0, 0, 0, 1]).reshape(3, 3))
False
Returns a generator yielding random triplets.
Parameters: |
|
---|---|
Returns: | Random triplets generator. |
Return type: | generator |
Notes
The doctest is assuming that np.random.RandomState() definition will return the same sequence no matter which OS or Python version is used. There is however no formal promise about the prng sequence reproducibility of either Python or *Numpy implementations: Laurent. (2012). Reproducibility of python pseudo-random numbers across systems and versions? Retrieved January 20, 2015, from http://stackoverflow.com/questions/8786084/reproducibility-of-python-pseudo-random-numbers-across-systems-and-versions
Examples
>>> from pprint import pprint
>>> prng = np.random.RandomState(4)
>>> pprint(
... tuple(random_triplet_generator(10, random_state=prng)))
(array([ 0.9670298..., 0.5472322..., 0.9726843...]),
array([ 0.7148159..., 0.6977288..., 0.2160895...]),
array([ 0.9762744..., 0.0062302..., 0.2529823...]),
array([ 0.4347915..., 0.7793829..., 0.1976850...]),
array([ 0.8629932..., 0.9834006..., 0.1638422...]),
array([ 0.5973339..., 0.0089861..., 0.3865712...]),
array([ 0.0441600..., 0.9566529..., 0.4361466...]),
array([ 0.9489773..., 0.7863059..., 0.8662893...]),
array([ 0.1731654..., 0.0749485..., 0.6007427...]),
array([ 0.1679721..., 0.7333801..., 0.4084438...]))