Processing math: 100%

colour.temperature Package

Module Contents

colour.temperature.CCT_to_uv(CCT, D_uv=0, method=u'Ohno 2013', **kwargs)

Returns the CIE UCS colourspace uv chromaticity coordinates from given correlated colour temperature Tcp and Δuv using given method.

Parameters:
  • CCT (numeric) – Correlated colour temperature Tcp.
  • D_uv (numeric) – Δuv.
  • method (unicode, optional) – {‘Ohno 2013’, ‘Robertson 1968’}, Computation method.
  • **kwargs (**) – Keywords arguments.
Returns:

CIE UCS colourspace uv chromaticity coordinates.

Return type:

ndarray

Raises:

ValueError – If the computation method is not defined.

Examples

>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> CCT = 6507.4342201047066
>>> D_uv = 0.003223690901512735
>>> CCT_to_uv(CCT, D_uv, cmfs=cmfs)  
array([ 0.1978003...,  0.3122005...])
colour.temperature.CCT_to_uv_Ohno2013(CCT, D_uv=0, cmfs=<colour.colorimetry.cmfs.XYZ_ColourMatchingFunctions object at 0x2abef8d86c10>)

Returns the CIE UCS colourspace uv chromaticity coordinates from given correlated colour temperature Tcp, Δuv and colour matching functions using Ohno (2013) method.

Parameters:
  • CCT (numeric) – Correlated colour temperature Tcp.
  • D_uv (numeric, optional) – Δuv.
  • cmfs (XYZ_ColourMatchingFunctions, optional) – Standard observer colour matching functions.
Returns:

CIE UCS colourspace uv chromaticity coordinates.

Return type:

ndarray

References

[4]Ohno, Y. (2014). Practical Use and Calculation of CCT and Duv. LEUKOS, 10(1), 47–55. doi:10.1080/15502724.2014.839020

Examples

>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> CCT = 6507.4342201047066
>>> D_uv = 0.003223690901512735
>>> CCT_to_uv_Ohno2013(CCT, D_uv, cmfs)  
array([ 0.1978003...,  0.3122005...])
colour.temperature.CCT_to_uv_Robertson1968(CCT, D_uv=0)

Returns the CIE UCS colourspace uv chromaticity coordinates from given correlated colour temperature Tcp and Δuv using Roberston (1968) method.

Parameters:
  • CCT (numeric) – Correlated colour temperature Tcp.
  • D_uv (numeric) – Δuv.
Returns:

CIE UCS colourspace uv chromaticity coordinates.

Return type:

ndarray

References

[7]Wyszecki, G., & Stiles, W. S. (2000). DISTRIBUTION TEMPERATURE, COLOR TEMPERATURE, AND CORRELATED COLOR TEMPERATURE. In Color Science: Concepts and Methods, Quantitative Data and Formulae (pp. 224–229). Wiley. ISBN:978-0471399186
[8]Adobe Systems. (2013). Adobe DNG Software Development Kit (SDK) - 1.3.0.0 - dng_sdk_1_3/dng_sdk/source/dng_temperature.cpp:: dng_temperature::xy_coord. Retrieved from https://www.adobe.com/support/downloads/dng/dng_sdk.html

Examples

>>> CCT = 6500.0081378199056
>>> D_uv = 0.0083333312442250979
>>> CCT_to_uv_Robertson1968(CCT, D_uv)  
array([ 0.1937413...,  0.3152210...])
colour.temperature.uv_to_CCT(uv, method=u'Ohno 2013', **kwargs)

Returns the correlated colour temperature Tcp and Δuv from given CIE UCS colourspace uv chromaticity coordinates using given method.

Parameters:
  • uv (array_like) – CIE UCS colourspace uv chromaticity coordinates.
  • method (unicode, optional) – {‘Ohno 2013’, ‘Robertson 1968’}, Computation method.
  • **kwargs (**) – Keywords arguments.
Returns:

Correlated colour temperature Tcp, Δuv.

Return type:

ndarray

Raises:

ValueError – If the computation method is not defined.

Examples

>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> uv = np.array([0.1978, 0.3122])
>>> uv_to_CCT(uv, cmfs=cmfs)  
array([  6.5075470...e+03,   3.2236908...e-03])
colour.temperature.uv_to_CCT_Ohno2013(uv, cmfs=<colour.colorimetry.cmfs.XYZ_ColourMatchingFunctions object at 0x2abef8d86c10>, start=1000, end=100000, count=10, iterations=6)

Returns the correlated colour temperature Tcp and Δuv from given CIE UCS colourspace uv chromaticity coordinates, colour matching functions and temperature range using Ohno (2013) method.

The iterations parameter defines the calculations precision: The higher its value, the more planckian tables will be generated through cascade expansion in order to converge to the exact solution.

Parameters:
  • uv (array_like) – CIE UCS colourspace uv chromaticity coordinates.
  • cmfs (XYZ_ColourMatchingFunctions, optional) – Standard observer colour matching functions.
  • start (numeric, optional) – Temperature range start in kelvins.
  • end (numeric, optional) – Temperature range end in kelvins.
  • count (int, optional) – Temperatures count in the planckian tables.
  • iterations (int, optional) – Number of planckian tables to generate.
Returns:

Correlated colour temperature Tcp, Δuv.

Return type:

ndarray

References

[3]Ohno, Y. (2014). Practical Use and Calculation of CCT and Duv. LEUKOS, 10(1), 47–55. doi:10.1080/15502724.2014.839020

Examples

>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> uv = np.array([0.1978, 0.3122])
>>> uv_to_CCT_Ohno2013(uv, cmfs)  
array([  6.5075470...e+03,   3.2236908...e-03])
colour.temperature.uv_to_CCT_Robertson1968(uv)

Returns the correlated colour temperature Tcp and Δuv from given CIE UCS colourspace uv chromaticity coordinates using Roberston (1968) method.

Parameters:uv (array_like) – CIE UCS colourspace uv chromaticity coordinates.
Returns:Correlated colour temperature Tcp, Δuv.
Return type:ndarray

References

[5]Wyszecki, G., & Stiles, W. S. (2000). DISTRIBUTION TEMPERATURE, COLOR TEMPERATURE, AND CORRELATED COLOR TEMPERATURE. In Color Science: Concepts and Methods, Quantitative Data and Formulae (pp. 224–229). Wiley. ISBN:978-0471399186
[6]Adobe Systems. (2013). Adobe DNG Software Development Kit (SDK) - 1.3.0.0 - dng_sdk_1_3/dng_sdk/source/dng_temperature.cpp:: dng_temperature::Set_xy_coord. Retrieved from https://www.adobe.com/support/downloads/dng/dng_sdk.html

Examples

>>> uv = np.array([0.19374137599822966, 0.31522104394059397])
>>> uv_to_CCT_Robertson1968(uv)  
array([  6.5000162...e+03,   8.3333289...e-03])
colour.temperature.CCT_to_xy(CCT, method=u'Kang 2002')

Returns the CIE XYZ tristimulus values xy chromaticity coordinates from given correlated colour temperature Tcp using given method.

Parameters:
  • CCT (numeric or array_like) – Correlated colour temperature Tcp.
  • method (unicode, optional) – {‘Kang 2002’, ‘CIE Illuminant D Series’}, Computation method.
Returns:

xy chromaticity coordinates.

Return type:

ndarray

colour.temperature.CCT_to_xy_Kang2002(CCT)

Returns the CIE XYZ tristimulus values xy chromaticity coordinates from given correlated colour temperature Tcp using Kang et al. (2002) method.

Parameters:CCT (numeric or array_like) – Correlated colour temperature Tcp.
Returns:xy chromaticity coordinates.
Return type:ndarray
Raises:ValueError – If the correlated colour temperature is not in appropriate domain.

References

[11]Kang, B., Moon, O., Hong, C., Lee, H., Cho, B., & Kim, Y. (2002). Design of advanced color: Temperature control system for HDTV applications. Journal of the Korean …, 41(6), 865–871. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=14448733

Examples

>>> CCT_to_xy_Kang2002(6504.38938305)  
array([ 0.313426...,  0.3235959...])
colour.temperature.CCT_to_xy_CIE_D(CCT)

Converts from the correlated colour temperature Tcp of a CIE Illuminant D Series to the chromaticity of that CIE Illuminant D Series illuminant.

Parameters:CCT (numeric or array_like) – Correlated colour temperature Tcp.
Returns:xy chromaticity coordinates.
Return type:ndarray
Raises:ValueError – If the correlated colour temperature is not in appropriate domain.

References

[12]Wyszecki, G., & Stiles, W. S. (2000). CIE Method of Calculating D-Illuminants. In Color Science: Concepts and Methods, Quantitative Data and Formulae (pp. 145–146). Wiley. ISBN:978-0471399186

Examples

>>> CCT_to_xy_CIE_D(6504.38938305)  
array([ 0.3127077...,  0.3291128...])
colour.temperature.xy_to_CCT(xy, method=u'McCamy 1992', **kwargs)

Returns the correlated colour temperature Tcp from given CIE XYZ tristimulus values xy chromaticity coordinates using given method.

Parameters:
  • xy (array_like) – xy chromaticity coordinates.
  • method (unicode, optional) – {‘McCamy 1992’, ‘Hernandez 1999’}, Computation method.
  • **kwargs (**) – Keywords arguments.
Returns:

Correlated colour temperature Tcp.

Return type:

numeric or ndarray

colour.temperature.xy_to_CCT_McCamy1992(xy)

Returns the correlated colour temperature Tcp from given CIE XYZ tristimulus values xy chromaticity coordinates using McCamy (1992) method.

Parameters:xy (array_like) – xy chromaticity coordinates.
Returns:Correlated colour temperature Tcp.
Return type:numeric or ndarray

References

[9]Wikipedia. (n.d.). Approximation. Retrieved June 28, 2014, from http://en.wikipedia.org/wiki/Color_temperature#Approximation

Examples

>>> xy = np.array([0.31271, 0.32902])
>>> xy_to_CCT_McCamy1992(xy)  
6504.3893830...
colour.temperature.xy_to_CCT_Hernandez1999(xy)

Returns the correlated colour temperature Tcp from given CIE XYZ tristimulus values xy chromaticity coordinates using Hernandez-Andres, Lee and Romero (1999) method.

Parameters:xy (array_like) – xy chromaticity coordinates.
Returns:Correlated colour temperature Tcp.
Return type:numeric

References

[10]Hernández-Andrés, J., Lee, R. L., & Romero, J. (1999). Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Applied Optics, 38(27), 5703–5709. doi:10.1364/AO.38.005703

Examples

>>> xy = np.array([0.31271, 0.32902])
>>> xy_to_CCT_Hernandez1999(xy)  
array(6500.0421533...)