Returns the CIE UCS colourspace uv chromaticity coordinates from given correlated colour temperature \(T_{cp}\) and \(\Delta_{uv}\) using given method.
Parameters: |
|
---|---|
Returns: | CIE UCS colourspace uv chromaticity coordinates. |
Return type: | ndarray |
Raises: | ValueError – If the computation method is not defined. |
Examples
>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> CCT = 6507.4342201047066
>>> D_uv = 0.003223690901512735
>>> CCT_to_uv(CCT, D_uv, cmfs=cmfs)
array([ 0.1978003..., 0.3122005...])
Returns the CIE UCS colourspace uv chromaticity coordinates from given correlated colour temperature \(T_{cp}\), \(\Delta_{uv}\) and colour matching functions using Ohno (2013) method.
Parameters: |
|
---|---|
Returns: | CIE UCS colourspace uv chromaticity coordinates. |
Return type: | ndarray |
References
[4] | Ohno, Y. (2014). Practical Use and Calculation of CCT and Duv. LEUKOS, 10(1), 47–55. doi:10.1080/15502724.2014.839020 |
Examples
>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> CCT = 6507.4342201047066
>>> D_uv = 0.003223690901512735
>>> CCT_to_uv_Ohno2013(CCT, D_uv, cmfs)
array([ 0.1978003..., 0.3122005...])
Returns the CIE UCS colourspace uv chromaticity coordinates from given correlated colour temperature \(T_{cp}\) and \(\Delta_{uv}\) using Roberston (1968) method.
Parameters: |
|
---|---|
Returns: | CIE UCS colourspace uv chromaticity coordinates. |
Return type: | ndarray |
References
[7] | Wyszecki, G., & Stiles, W. S. (2000). DISTRIBUTION TEMPERATURE, COLOR TEMPERATURE, AND CORRELATED COLOR TEMPERATURE. In Color Science: Concepts and Methods, Quantitative Data and Formulae (pp. 224–229). Wiley. ISBN:978-0471399186 |
[8] | Adobe Systems. (2013). Adobe DNG Software Development Kit (SDK) - 1.3.0.0 - dng_sdk_1_3/dng_sdk/source/dng_temperature.cpp:: dng_temperature::xy_coord. Retrieved from https://www.adobe.com/support/downloads/dng/dng_sdk.html |
Examples
>>> CCT = 6500.0081378199056
>>> D_uv = 0.0083333312442250979
>>> CCT_to_uv_Robertson1968(CCT, D_uv)
array([ 0.1937413..., 0.3152210...])
Returns the correlated colour temperature \(T_{cp}\) and \(\Delta_{uv}\) from given CIE UCS colourspace uv chromaticity coordinates using given method.
Parameters: |
|
---|---|
Returns: | Correlated colour temperature \(T_{cp}\), \(\Delta_{uv}\). |
Return type: | ndarray |
Raises: | ValueError – If the computation method is not defined. |
Examples
>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> uv = np.array([0.1978, 0.3122])
>>> uv_to_CCT(uv, cmfs=cmfs)
array([ 6.5075470...e+03, 3.2236908...e-03])
Returns the correlated colour temperature \(T_{cp}\) and \(\Delta_{uv}\) from given CIE UCS colourspace uv chromaticity coordinates, colour matching functions and temperature range using Ohno (2013) method.
The iterations parameter defines the calculations precision: The higher its value, the more planckian tables will be generated through cascade expansion in order to converge to the exact solution.
Parameters: |
|
---|---|
Returns: | Correlated colour temperature \(T_{cp}\), \(\Delta_{uv}\). |
Return type: | ndarray |
References
[3] | Ohno, Y. (2014). Practical Use and Calculation of CCT and Duv. LEUKOS, 10(1), 47–55. doi:10.1080/15502724.2014.839020 |
Examples
>>> from colour import STANDARD_OBSERVERS_CMFS
>>> cmfs = 'CIE 1931 2 Degree Standard Observer'
>>> cmfs = STANDARD_OBSERVERS_CMFS.get(cmfs)
>>> uv = np.array([0.1978, 0.3122])
>>> uv_to_CCT_Ohno2013(uv, cmfs)
array([ 6.5075470...e+03, 3.2236908...e-03])
Returns the correlated colour temperature \(T_{cp}\) and \(\Delta_{uv}\) from given CIE UCS colourspace uv chromaticity coordinates using Roberston (1968) method.
Parameters: | uv (array_like) – CIE UCS colourspace uv chromaticity coordinates. |
---|---|
Returns: | Correlated colour temperature \(T_{cp}\), \(\Delta_{uv}\). |
Return type: | ndarray |
References
[5] | Wyszecki, G., & Stiles, W. S. (2000). DISTRIBUTION TEMPERATURE, COLOR TEMPERATURE, AND CORRELATED COLOR TEMPERATURE. In Color Science: Concepts and Methods, Quantitative Data and Formulae (pp. 224–229). Wiley. ISBN:978-0471399186 |
[6] | Adobe Systems. (2013). Adobe DNG Software Development Kit (SDK) - 1.3.0.0 - dng_sdk_1_3/dng_sdk/source/dng_temperature.cpp:: dng_temperature::Set_xy_coord. Retrieved from https://www.adobe.com/support/downloads/dng/dng_sdk.html |
Examples
>>> uv = np.array([0.19374137599822966, 0.31522104394059397])
>>> uv_to_CCT_Robertson1968(uv)
array([ 6.5000162...e+03, 8.3333289...e-03])
Returns the CIE XYZ tristimulus values xy chromaticity coordinates from given correlated colour temperature \(T_{cp}\) using given method.
Parameters: |
|
---|---|
Returns: | xy chromaticity coordinates. |
Return type: | ndarray |
Returns the CIE XYZ tristimulus values xy chromaticity coordinates from given correlated colour temperature \(T_{cp}\) using Kang et al. (2002) method.
Parameters: | CCT (numeric or array_like) – Correlated colour temperature \(T_{cp}\). |
---|---|
Returns: | xy chromaticity coordinates. |
Return type: | ndarray |
Raises: | ValueError – If the correlated colour temperature is not in appropriate domain. |
References
[11] | Kang, B., Moon, O., Hong, C., Lee, H., Cho, B., & Kim, Y. (2002). Design of advanced color: Temperature control system for HDTV applications. Journal of the Korean …, 41(6), 865–871. Retrieved from http://cat.inist.fr/?aModele=afficheN&cpsidt=14448733 |
Examples
>>> CCT_to_xy_Kang2002(6504.38938305)
array([ 0.313426..., 0.3235959...])
Converts from the correlated colour temperature \(T_{cp}\) of a CIE Illuminant D Series to the chromaticity of that CIE Illuminant D Series illuminant.
Parameters: | CCT (numeric or array_like) – Correlated colour temperature \(T_{cp}\). |
---|---|
Returns: | xy chromaticity coordinates. |
Return type: | ndarray |
Raises: | ValueError – If the correlated colour temperature is not in appropriate domain. |
References
[12] | Wyszecki, G., & Stiles, W. S. (2000). CIE Method of Calculating D-Illuminants. In Color Science: Concepts and Methods, Quantitative Data and Formulae (pp. 145–146). Wiley. ISBN:978-0471399186 |
Examples
>>> CCT_to_xy_CIE_D(6504.38938305)
array([ 0.3127077..., 0.3291128...])
Returns the correlated colour temperature \(T_{cp}\) from given CIE XYZ tristimulus values xy chromaticity coordinates using given method.
Parameters: |
|
---|---|
Returns: | Correlated colour temperature \(T_{cp}\). |
Return type: | numeric or ndarray |
Returns the correlated colour temperature \(T_{cp}\) from given CIE XYZ tristimulus values xy chromaticity coordinates using McCamy (1992) method.
Parameters: | xy (array_like) – xy chromaticity coordinates. |
---|---|
Returns: | Correlated colour temperature \(T_{cp}\). |
Return type: | numeric or ndarray |
References
[9] | Wikipedia. (n.d.). Approximation. Retrieved June 28, 2014, from http://en.wikipedia.org/wiki/Color_temperature#Approximation |
Examples
>>> xy = np.array([0.31271, 0.32902])
>>> xy_to_CCT_McCamy1992(xy)
6504.3893830...
Returns the correlated colour temperature \(T_{cp}\) from given CIE XYZ tristimulus values xy chromaticity coordinates using Hernandez-Andres, Lee and Romero (1999) method.
Parameters: | xy (array_like) – xy chromaticity coordinates. |
---|---|
Returns: | Correlated colour temperature \(T_{cp}\). |
Return type: | numeric |
References
[10] | Hernández-Andrés, J., Lee, R. L., & Romero, J. (1999). Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities. Applied Optics, 38(27), 5703–5709. doi:10.1364/AO.38.005703 |
Examples
>>> xy = np.array([0.31271, 0.32902])
>>> xy_to_CCT_Hernandez1999(xy)
array(6500.0421533...)