Defines array utilities objects.
Converts given \(x\) variable to numeric. In the event where \(x\) cannot be converted, it is passed as is.
Parameters: | x (object) – Variable to convert. |
---|---|
Returns: | \(x\) variable converted to numeric. |
Return type: | ndarray |
See also
as_stack(), as_shape(), auto_axis()
Examples
>>> as_numeric(np.array([1]))
1.0
>>> as_numeric(np.arange(10))
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
Returns closest \(y\) variable element to reference \(x\) variable.
Parameters: |
|
---|---|
Returns: | Closest \(y\) variable element. |
Return type: | numeric |
Examples
>>> y = np.array([24.31357115,
... 63.62396289,
... 55.71528816,
... 62.70988028,
... 46.84480573,
... 25.40026416])
>>> closest(y, 63)
62.70988028
Normalises given array_like \(x\) variable values and optionally clip them between.
Parameters: |
|
---|---|
Returns: | Normalised \(x\) variable. |
Return type: | ndarray |
Examples
>>> x = np.array([0.48224885, 0.31651974, 0.22070513])
>>> normalise(x)
array([ 1. , 0.6563411..., 0.4576581...])
Returns the steps of given distribution.
Parameters: | distribution (array_like) – Distribution to retrieve the steps. |
---|---|
Returns: | Distribution steps. |
Return type: | ndarray |
Examples
Uniformly spaced variable:
>>> y = np.array([1, 2, 3, 4, 5])
>>> steps(y)
array([1])
Non-uniformly spaced variable:
>>> y = np.array([1, 2, 3, 4, 8])
>>> steps(y)
array([1, 4])
Returns if given distribution is uniform.
Parameters: | distribution (array_like) – Distribution to check for uniformity. |
---|---|
Returns: | Is distribution uniform. |
Return type: | bool |
Examples
Uniformly spaced variable:
>>> y = np.array([1, 2, 3, 4, 5])
>>> is_uniform(y)
True
Non-uniformly spaced variable:
>>> y = np.array([1, 2, 3.1415, 4, 5])
>>> is_uniform(y)
False
Tests whether each element of an array is also present in a second array within given tolerance.
Parameters: |
|
---|---|
Returns: | A boolean array with a shape describing whether an element of a is present in b within given tolerance. |
Return type: | ndarray |
References
[1] | Yorke, R. (2014). Python: Change format of np.array or allow tolerance in in1d function. Retrieved March 27, 2015, from http://stackoverflow.com/a/23521245/931625 |
Examples
>>> a = np.array([0.50, 0.60])
>>> b = np.linspace(0, 10, 101)
>>> np.in1d(a, b)
array([ True, False], dtype=bool)
>>> in_array(a, b)
array([ True, True], dtype=bool)
Stacks arrays in sequence along the last axis (tail).
Rebuilds arrays divided by tsplit().
Parameters: | a (array_like) – Array to perform the stacking. |
---|---|
Return type: | ndarray |
See also
Examples
>>> a = 0
>>> tstack((a, a, a))
array([0, 0, 0])
>>> a = np.arange(0, 6)
>>> tstack((a, a, a))
array([[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5]])
>>> a = np.reshape(a, (1, 6))
>>> tstack((a, a, a))
array([[[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5]]])
>>> a = np.reshape(a, (1, 1, 6))
>>> tstack((a, a, a))
array([[[[0, 0, 0],
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5]]]])
Splits arrays in sequence along the last axis (tail).
Parameters: | a (array_like) – Array to perform the splitting. |
---|---|
Return type: | ndarray |
See also
Examples
>>> a = np.array([0, 0, 0])
>>> tsplit(a)
array([0, 0, 0])
>>> a = np.array([[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2],
... [3, 3, 3],
... [4, 4, 4],
... [5, 5, 5]])
>>> tsplit(a)
array([[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5],
[0, 1, 2, 3, 4, 5]])
>>> a = np.array([[[0, 0, 0],
... [1, 1, 1],
... [2, 2, 2],
... [3, 3, 3],
... [4, 4, 4],
... [5, 5, 5]]])
>>> tsplit(a)
array([[[0, 1, 2, 3, 4, 5]],
[[0, 1, 2, 3, 4, 5]],
[[0, 1, 2, 3, 4, 5]]])
Returns the per row diagonal matrices of the given array.
Parameters: | a (array_like) – Array to perform the diagonal matrices computation. |
---|---|
Return type: | ndarray |
References
[1] | Castro, S. (2014). Numpy: Fastest way of computing diagonal for each row of a 2d array. Retrieved August 22, 2014, from http://stackoverflow.com/questions/26511401/numpy-fastest-way-of-computing-diagonal-for-each-row-of-a-2d-array/26517247#26517247 |
Examples
>>> a = np.array([[0.25891593, 0.07299478, 0.36586996],
... [0.30851087, 0.37131459, 0.16274825],
... [0.71061831, 0.67718718, 0.09562581],
... [0.71588836, 0.76772047, 0.15476079],
... [0.92985142, 0.22263399, 0.88027331]])
>>> row_as_diagonal(a)
array([[[ 0.25891593, 0. , 0. ],
[ 0. , 0.07299478, 0. ],
[ 0. , 0. , 0.36586996]],
[[ 0.30851087, 0. , 0. ],
[ 0. , 0.37131459, 0. ],
[ 0. , 0. , 0.16274825]],
[[ 0.71061831, 0. , 0. ],
[ 0. , 0.67718718, 0. ],
[ 0. , 0. , 0.09562581]],
[[ 0.71588836, 0. , 0. ],
[ 0. , 0.76772047, 0. ],
[ 0. , 0. , 0.15476079]],
[[ 0.92985142, 0. , 0. ],
[ 0. , 0.22263399, 0. ],
[ 0. , 0. , 0.88027331]]])
Convenient wrapper around np.einsum() with the following subscripts: ‘...ij,...j->...i’.
It performs the dot product of two arrays where m parameter is expected to be an array of 3x3 matrices and parameter v an array of vectors.
Parameters: |
|
---|---|
Return type: | ndarray |
See also
Examples
>>> m = np.array([[0.7328, 0.4296, -0.1624],
... [-0.7036, 1.6975, 0.0061],
... [0.0030, 0.0136, 0.9834]])
>>> m = np.reshape(np.tile(m, (6, 1)), (6, 3, 3))
>>> v = np.array([0.07049534, 0.10080000, 0.09558313])
>>> v = np.tile(v, (6, 1))
>>> dot_vector(m, v)
array([[ 0.0794399..., 0.1220905..., 0.0955788...],
[ 0.0794399..., 0.1220905..., 0.0955788...],
[ 0.0794399..., 0.1220905..., 0.0955788...],
[ 0.0794399..., 0.1220905..., 0.0955788...],
[ 0.0794399..., 0.1220905..., 0.0955788...],
[ 0.0794399..., 0.1220905..., 0.0955788...]])
Convenient wrapper around np.einsum() with the following subscripts: ‘...ij,...jk->...ik’.
It performs the dot product of two arrays where a parameter is expected to be an array of 3x3 matrices and parameter b another array of of 3x3 matrices.
Parameters: |
|
---|---|
Return type: | ndarray |
See also
Examples
>>> a = np.array([[0.7328, 0.4296, -0.1624],
... [-0.7036, 1.6975, 0.0061],
... [0.0030, 0.0136, 0.9834]])
>>> a = np.reshape(np.tile(a, (6, 1)), (6, 3, 3))
>>> b = a
>>> dot_matrix(a, b)
array([[[ 0.2342420..., 1.0418482..., -0.2760903...],
[-1.7099407..., 2.5793226..., 0.1306181...],
[-0.0044203..., 0.0377490..., 0.9666713...]],
[[ 0.2342420..., 1.0418482..., -0.2760903...],
[-1.7099407..., 2.5793226..., 0.1306181...],
[-0.0044203..., 0.0377490..., 0.9666713...]],
[[ 0.2342420..., 1.0418482..., -0.2760903...],
[-1.7099407..., 2.5793226..., 0.1306181...],
[-0.0044203..., 0.0377490..., 0.9666713...]],
[[ 0.2342420..., 1.0418482..., -0.2760903...],
[-1.7099407..., 2.5793226..., 0.1306181...],
[-0.0044203..., 0.0377490..., 0.9666713...]],
[[ 0.2342420..., 1.0418482..., -0.2760903...],
[-1.7099407..., 2.5793226..., 0.1306181...],
[-0.0044203..., 0.0377490..., 0.9666713...]],
[[ 0.2342420..., 1.0418482..., -0.2760903...],
[-1.7099407..., 2.5793226..., 0.1306181...],
[-0.0044203..., 0.0377490..., 0.9666713...]]])